Следы побежалости на металле

Содержание
  1. Цвета побежалости металлов, определение температуры по цвету нагретой заготовки
  2. Происхождение цветов побежалости металла
  3. Создание искусственных цветов побежалости
  4. Цвет побежалости металла и его температура или температура цветов побежалости металла
  5. Шкала цветов побежалости стали
  6. Следы побежалости на металле
  7. Шкала цветов побежалости углеродистых сталей
  8. Цвета побежалости для отделки поверхности
  9. Вопросы для самопроверки
  10. При термической обработке
  11. Закалка и отпуск стали. Цвета каления и побежалости
  12. Что улучшает правильная закалка стали
  13. Цвет сварных швов: происхождение и особенности побежалости
  14. Что такое цвета побежалости?
  15. О чем свидетельствует цвет сварного шва?
  16. В каких случаях происходит появление цветов побежалости?
  17. Что нужно знать о цветах побежалости для нержавеющей стали?
  18. Что такое закалка, отпуск стали и цвета побежалости
  19. Как делают закалку и отпуск
  20. Выбор стали для закалки
  21. Закалка углеродистых сталей
  22. Закалка легированных сталей
  23. Закалка ножевой стали в домашних условиях
  24. Цвета побежалости металлов
  25. Происхождение

Цвета побежалости металлов, определение температуры по цвету нагретой заготовки

Следы побежалости на металле

Цвета побежалости металла – это спектр цветов,  которые образуются на поверхности металла при появлении появления окисной пленки. Эти окисные пленки создаются из самого металла при нагревании. Важным условием для образования такой пленки является отсутствие воздействия воды.

Такая побежалость металла является дефектом сварного соединения.

Происхождение цветов побежалости металла

В естественной природе цвета побежалости можно наблюдать на поверхностях ряда минералов, среди них пирит и халькопирит.

Логично заключить, что эти изменения видны в следствие окисления верхнего слоя материала. Как результат — они покрываются тонкой оксидной пленкой, которая и преломляет попадающий на ее поверхность свет.

Создавшийся эффект интерференции, «окрашивает» поверхность металла в разные цвета.

Яркость цветов побежалости зависит от толщины образуемой оксидной пленки и длины световой волны, которая попадает на поверхность материала. Самые яркие оттенки можно увидеть на медных минералах. Получаемые цвета также зависят от состава металла. Если в элементе есть много ионов металлов, то он окрашивается в синие цвета. В случае если присутствуют хромофоры, вы увидите красные цвета.

Искусственный цвет побежалости металла появляется на его поверхности при воздействии высоких температур. Важно условие – отсутствие воды и любых других жидкостей.

По мере нагрева образовавшаяся окисная пленка уменьшается, что объясняется диффузией (процесс «смешивания» или проникновения частиц хим.элемента в другой материал). Конкретно в ситуации с окисной пленкой металла наблюдается взаимодействие атомов кислорода и металла.

Стоит отметить, что на легированных сталях цвет побежалости появится при большем нагреве, чем на углеродистой стали.

Создание искусственных цветов побежалости

В сфере обработки металлов активно используется прием воронения. При этом технология покрытия сплавов окисными пленками известна и активно используется уже не одну тысячу лет.

Вороненный металл устойчив к ржавчине, более прочен перед механическими нагрузками и имеет красивый окрас даже без дополнительных покрытий и красок.

Воронение выполняется следующим образом:

  • Заготовку обмакивают или протирают минеральным маслом;
  • Нагревают на металлическом листе до соответствующей температуры (для разных металлов и сплавов она может отличаться);
  • После могут выполнить закалку в холодном масле (чтоб избежать «отпуска металла»).

Получаемый слой окисла на поверхности металлического изделия полностью устойчив к воздействию воды, а также обладает высокой прочностью к механическим воздействиям.

Таблицы 1.

Окисные пленки образуются с различной скоростью и на это влияют следующие факторы:

  1. Закаленность детали (наличие закалки ускоряет появление побежалости);
  2. Наличие загрязнений (при нагреве загрязнения обугливаются и усложняют образование равномерного слоя окисной пленки);
  3. Шероховатости. Заготовка, имеющая неровности получает плотную пленку и как результат красивого переливания цветов можно не увидеть. Полированная же деталь быстро образует на поверхностях равномерный тонкий слой окислов;
  4. Технологии нагрева. В зависимости от оборудования, которое применяется для нагрева деталей, с разной скоростью и разной толщины образуются окисные пленки. Для нагрева деталей лучше всего использовать оборудование, позволяющее контролировать и поддерживать нужную температуру стабильно.

Тонкие оксидные пленки поглощают световые волны с меньшей длиной волны, но отражают – с большей. Цвет металлических деталей меняется в зависимости от температуры и плотности оксидной пленки. Чем толще оксидная пленка, тем светлее окраска. Синий или фиолетовый цвет получается, когда из спектра отражаются наиболее длинные волны.

Если пленка из оксидов отражает волны с малой длиной волны, то металлическая поверхность становится желтой. Светлые цвета соответствуют высокой температуре нагрева, светлые – более низкой.

По этой причине многие мастер часто определяют при помощи цветов побежалости степень закалки изделий, стальной стружки и режущих инструментов, применяемых во время проведения токарных работ.

Несмотря на эти факторы, при помощи цветов побежалости нельзя точно определить температуру металла, потому что на величину этого показателя оказывают влияние следующие факторы:

  • время нагрева: промежуток времени, в течение которого металлическая деталь нагревается до температуры окружающей среды при отсутствии теплоотдачи.
  • наличие различных примесей в составе металла;
  • особенности освещения в помещении, где проводилась сварка или закалка заготовок;
  • скорость разогревания: изменение температуры изделия в единицу времени при его нагревании.

Среди современных приборов существуют пирометров, которые обеспечивают достаточно точный  контроль температуры. Они работают на основе анализа лазерных лучей. Приборы оснащены специальными датчиками, анализирующими отраженные лазерные лучи и отображают температуру металла, которой соответствуют полученные характеристики излучений.

Технологии с использованием цветов побежалости активно применяют в производстве рабочих инструментов и оборудования. Особенно распространено использование этого приема при работе с медью, железом, алюминием и латуни.

Закалка улучшает следующие параметры металлической поверхности:

Цвет побежалости металла и его температура или температура цветов побежалости металла

Как уже стало ясно из описанного выше материала, температура и цвет металла изменяется все время нагрева заготовки.

Важно отметить, что температура побежалости металла отличается для каждого отдельно взятого сплава и вида металла.

Поэтому существует большое количество таблиц и списков соотношения цвета и температуры. Ниже приведены таблицы цветом побежалости металла для разные сплавов.

Шкала цветов побежалости стали

Для углеродистых сталей можно привести следующую зависимость цветов и соответствующих температур:

Температура цветов побежалости для углеродистых сталей
ОкрасПределы температур, °С
Лимонный220 – 229
Желтый (цвет соломы)230 – 245
Золотой246 – 255
Земляной или коричневый256 – 264
Алый или красно-оранжевый265 — 274
Пурпурный275 – 279
Аметистовый280 – 289
Небесный290 – 294
Твиттера295 – 299
Индиго Крайола300 – 309
Светло-голубой310 – 329
Аквамариновый320 — 339

На заготовках из нержавейки 12Х18Н10Т, где 18% хрома, также 10% никеля и 1% титана (взято из ГОСТ 5632-2014), цвета побежалости в зависимости от температуры будут изменяться несколько другим образом.

Главное отличие – величины температур. Это объясняется коррозийной устойчивостью и жаропрочной стойкостью.

Поэтому при нагреве и охлаждении частицы сплава и кислорода взаимодействуют медленнее, замедляя создание оксидной пленки.

В следующей таблице цветов побежалости металла представлены особенности изменения цвета изделий из нержавеющей стали:

Температура цветов побежалости для нержавеющих сталей
ОкрасПределы температур,°С
Светло-соломенный300 – 399
Золотистый400 – 499
Земляной или коричневый500 – 599
Красный или пурпурный600 – 699
Синий или черный700 – 779

На поверхностях заготовок из нержавеющей стали могут появиться радужные полосы. Они могут появиться при нагревании изделия до температуры кипения (100 °С). Появление радужных следов обусловлено изменениями в кристаллической решетке металла.

Радужный окрас на поверхности обрабатываемой заготовки не свидетельствуют о перегреве нержавеющей стали.

Следы побежалости на металле

Следы побежалости на металле

Цвета побежалости — это окисные пленки на поверхности железных сплавов различной толщины и плотности. Они образуются без участия молекул воды при нагревании до определенных температур.

Самое простое представление о тонких пленках можно получить на примере мыльных пузырей или пленках нефтепродуктов на поверхности воды.

Для железа цвета побежалости образуются при нагревании, и толщина пленки соизмерима с размерами молекул.

Это явление с физической точки зрения объясняется теорией «тонких пленок» и обусловлено оптической интерференцией окисных пленок в зависимости от своей толщины.

Шкала цветов побежалости углеродистых сталей

Толщина окисных пленок определяется температурой и временем нагрева, а существующие шкалы цветов побежалости носят довольно условный характер.

  • Во-первых, визуальная оценка — очень субъективный процесс, результаты которого определяются освещенностью и практическим опытом.
  • Во-вторых, плотность окисной пленки определяется и химсоставом сплава.

Поэтому таблицы соответствия разнятся (для углеродистых, жаростойких, нержавеющих сталей), и можно говорить только об ориентировочном соответствии. Но усредненная таблица цветов побежалости выглядит следующим образом

ЦветаТемпература нагрева, °С
бледно-желтый220
бледно-соломенно-желтый230
золотисто -желтый246
коричнево-желтый до бурого256
пурпурно-красный265
пурпурный275
лиловый280
голубой290
васильковый295
индиго300
светло-синий310
цвет морской воды320

Например, при продолжительном нагреве при 220 °С можно вызвать посинение стали. Или желаемый цвет получается при кратковременном нагреве до температуры, более высокой, чем указанная в таблице. Но для каждого цвета побежалости существует температурный минимум, ниже которого нужный цвет не получится.

Цвета побежалости для отделки поверхности

При подготовке регламентов стоит предпочесть более низкие температуры и более продолжительную выдержку, так как пленки в этом случае получаются более прочными и исключается создание дополнительных термических напряжений, которые могут приводить к короблению изделий.

Цвета побежалости используют для отделки поверхности изделий из стали, чугуна и цветных металлов: пряжек, поковок, солнечных коллекторов, холодного оружия и обрабатывающего инструмента. Это и всем известный процесс воронения.

И для закаленной стали и не закаленной образование окисных пленок будет происходить по-разному. На скорость образования окисных пленок значительное влияние оказывают:

  • структура. Закаленные стали окисляются медленнее,
  • загрязненность поверхности. Масляные пленки обугливаются до сажи, поэтому пленки получатся рыхлыми и неплотными,
  • шероховатость поверхности. На полированной поверхности пленка получится тоньше, чем на шершавой при одинаковых условиях.

Для получения плотной, равномерной окисной пленки необходимы нагревательные печи, способные удерживать стабильную температуру в течение длительного времени.

В домашних условиях это или горн, или паяльная лампа, или качественная плита с духовкой. И в таком случае режим чернения подбирается для каждого изделия индивидуально. Необходимо помнить, что переход из одного цвета в другой происходит быстро, поэтому процесс требует самого пристального внимания.

Ирина Файдюк

Вопросы для самопроверки

  1. Каким требованиям должен отвечать анодный протектор?

2.Условия применения катодной протекторнойзащиты.

3.Сокращаются ли суммарные потери металлав случае защиты анодным протектором?

4.При каких условиях достигается полнаяэлектрохимическая защита с помощьюанодного протектора?

5.Каков физический смысл понятия «радиусдействия протектора»?

6.Основные качественные характеристикиработы анодного протектора.

7.Какую роль играет наполнитель дляпротектора?

8.Преимущества и недостатки катоднойпротекторной защиты.

При термической обработке

Большинствометаллов вовремя термическойобработки при взаимодействии сокислителями покрываются пленкойоксидов.

Когдаметаллы взаимодействуют с окислителями(CO2,H2O,O2,Cl2,SO2)начальной стадией является адсорбцияокислителей на поверхности металла.

Между атомами металла и окислителемсразу возникает сильная ионная связь– атом металла передает атому кислородадва электрона. Атом кислорода находитсяпод воздействием поля, которое создаютатомы металла.

На поверхности металлаадсорбируется окислитель, при этомвнутренняя поверхность образовавшейсяадсорбционной пленки заряженаположительно, а внешняя – отрицательно.

Поверхностьметалла заполняется хемосорбированнымокислителем почти мгновенно и образуетсятонкий слой окисляющего вещества. Припониженных температурах послехемосорбированного окислителя за счетванн-дер-ваальсовых сил может возникнутьи физическая адсорбция молекул окислителя.

Еслимежду металлом и окислителем естьхимическое сродство (оксид термодинамическистабильный), то пленка, состоящая изхемосорбированного окислителя,превращается в оксидную пленку. Металли окислитель в оксидной пленке поддерживаютионную связь.

Следующейстадией является образование продуктовкоррозии– химических соединений, которыеобразуютсяв результате химического взаимодействияметалла и некоторых компонентовокружающей среды. Продукты коррозииформируют на поверхности металла пленку,которая может обладать защитнымисвойствами, затрудняя подход окислителей.Данный процесс протекает с самоторможениемво времени.

Потолщине оксидной пленки на металлах ихпринято разделять на три группы: толстые,тонкие, средние.

Тонкиеоксидные пленкиневидимы для человека невооруженнымглазом. Их толщина составляет до 40нм.

Средниеоксидные пленкив толщину достигают от 40до 500 нми дают цвета побежалости.

Толстыеоксидные пленкихорошо видны на поверхности металла.Их толщина составляет свыше 500нм.Иногда они могут быть достаточнотолстыми, как, например, окалина наповерхности стали.

Отзащитных свойств оксидных пленок зависитжаростойкость металла, законы ростатолщины пленки во времени и многоедругое.

Приобразовании окисной пленки устанавливаетсяскорость окисления металла, котораяможет изменяться во времени.

Радужнаяокраска, появляющаяся на чистойповерхности нагретой стали в результатеобразования на ней тончайшей оксиднойплёнки, называется цветомпобежалости.

Толщинаплёнки зависит от температуры нагревастали. Плёнки разной толщины по-разномуотражают световые лучи, чем и обусловленыте или иные цвета побежалости (см. таблицу5.1). На легированных (особенновысоколегированных) сталях те же цветапобежалости появляются при более высокихтемпературах.

Таблица5.1 -Цветапобежалости на поверхности железа

Цветапобежалости возникают из-за интерференциибелого светав тонких плёнках на отражающейповерхности. При этом, по мере ростатолщины плёнки, последовательно возникаютусловия гашения лучей с той или инойдлинойволны.

Сначала из белого света вычитаетсяфиолетово-синий цвет(λ ~400 нм),и наблюдается дополнительныйцвет— жёлтый.

Далее, по мере роста толщины плёнки, и,соответственно, увеличения длины волны«погасившихся» лучей, из непрерывногосолнечного спектравычитается зелёныйцвет,и наблюдается красный,и т. д.

Цветпобежалости (а также цветакаления)раньше, до появления пирометров,широко использовали в качестве индикаторатемпературынагрева железа и сталипри термообработке.По цветам побежалости также судили отемпературе нагрева стальной стружки,и, следовательно, резцапри операциях точения, сверления,резания.

Цветапобежалости — не очень точный индикатор.На них влияет скорость подъёма температуры,состав газовой среды, время выдержкистали при данной температуре, а такжехарактер освещения и др. факторы.

Налегированных сталях цвета побежалостиобычно появляются при более высокихтемпературах, так как нередко легированиеповышает стойкость стали к окислениюна воздухе.

Цветапобежалости применяются при декоративнойотделке стальных изделий, а также приих лазерной маркировке.

Закалка и отпуск стали. Цвета каления и побежалости

Возможно, вам не раз приходилось слышать эти термины, когда речь шла о кованых ножах, да и вообще о сталях. Настало время разобраться, что же они означают.

Закалка, по своей сути – это нагрев готового изделия до определенной температуры с последующим охлаждением с определенной скоростью, а отпуск – это следующий за закалкой дополнительный нагрев до более низких температур с иных режимом охлаждения; каким именно, зависит от марки стали. Скорость регулируется т.н. «закалочной средой» – жидкостью, в которой клинок охлаждается с определенной скоростью: машинное масло, солевые растворы, поток воздуха с и т.п. Например, масло охлаждает со скоростью примерно в 6 раз меньшей, чем циркулирующая вода.

Чтобы перейти к конкретным цифрам, нужно понять, зачем вообще нужны эти два процесса.

Что улучшает правильная закалка стали

Если спросить среднестатистического человека, который не имеет отношения к ковке ножей, на вопрос «Что дает закалка?» он первым делом скажет о прочности. В целом, он будет прав, хотя из нескольких качеств, которые улучшает закалка, лидировать будет все-таки твердость. Но обо всем по порядку.

  • Твердость клинковых сталей, как правило, измеряется по шкале Роквелла (HRC); европейские ножи чуть не дотягивают до показателя в 60 HRC, азиатские чуть переваливают за эту отметку. Если мы будем царапать друг о друга два одинаковых сплава различной твердости, следы останутся на том, что мягче; таким образом, твердость дает нам понятие о том, как хорошо сплав сопротивляется механическим повреждениям.
  • Прочность обычно подразумевает стойкость стали к разрушению (на изгиб, на удар и т.д.) – для ножа это важно, когда мы, к примеру, проверяем его «на изгиб». Если сталь сыровата, то клинок после сгибания частично останется деформированным. Правда, если сталь перекалена, будет еще хуже – клинок сломается; поэтому при закалке важно соблюдать золотую середину.
  • Упругость. Это как раз то, о чем мы говорили чуть выше – способность возвращать исходную форму после снятия нагрузки. Если закалка сделана по всем правилам, с этим показателем все будет в порядке: при изгибе примерно на 10 градусов (а для тонких кухонных ножей и до 30) клинок вернет изначальную форму.
  • Износостойкость. Правильный режим закалки улучшает все показатели, которые входят в это понятие: способность сопротивляться механическому и абразивному износу, способность держать заточку и стойкость к ударным нагрузкам.

Цвет сварных швов: происхождение и особенности побежалости

Следы побежалости на металле

Результатом хорошей и профессиональной работы сварщика можно любоваться достаточно долго. Особенно интересным для созерцания является цвет сварных швов, способный принимать самые причудливые оттенки – от голубого или синего до розового или светло-желтого.

При этом многих мастеров интересует, является ли цвет побежалости шва при сварке признаком производственного дефекта или же можно его считать побочным эффектом при работе с защитными газами, способным указать на качество соединения металлических делателей.

В этой статье мы постараемся найти ответ на эти вопросы.

Что такое цвета побежалости?

Это цвета радуги, которые возникают на гладкой поверхности металлического изделия при образовании на ней особой оксидной пленки.

Именно эта пленка, которую так же называют побежалостью, представляет собой очень тонкий слой оксида металла, толщина которого может варьироваться от нескольких миллиметров до величины всего в нескольких молекул.

Являясь прозрачной, такая пленка обеспечивает процесс интерференции в ней световых лучей, что и приводит к появлению радужных цветов, а также их оттенков. Как правило, побежалость возникает при термическом воздействии на металлическое изделие, например, при термообработке стальных сплавов или же сваривании металлов.

О чем свидетельствует цвет сварного шва?

Раньше цвета сварного шва использовали для определения температуры при термической обработке стальных сплавов. При этом нужно понимать, что это весьма неточный показатель, так как цвет будет зависеть не только от самой лишь температуры, но и от других факторов, к примеру:

  • скорости нагрева материала;
  • того, какие компоненты входят в состав газовой среды, в которой происходит процесс термообработки;
  • продолжительности выдержки стального сплава;
  • особенностей освещения и прочего.

Стоит отметить, что существует четкая зависимости между получаемым цветом побежалости и толщиной самой пленки, ведь чем она будет толще, тем короче будут волны отражаемого ей света.

К примеру, синие оттенки шва появляются в том случае, когда из белого «вычитают» волны более значительной длины, к примеру, оранжевые или красные. А вот желтый цвет возникает, когда из цветового спектра вычитаются цвета коротких волн – синего и фиолетового.

Таким образом синий цвет побежалости свидетельствует о том, что температура нагрева является достаточно высокой, в то время как желтый указывает на более низкий температурный показатель.

В каких случаях происходит появление цветов побежалости?

Цвета побежалости проявляются при температуре нагрева от 200 до 400 градусов по Цельсию. Они возникают на так называемом участке №7 – зоне синеломкости.

Если речь идет о сваривании низкоуглеродистых стальных сплавов, отличающихся высоким содержанием кислорода, азота и водорода, то именно на участке №7 происходит снижение уровня ударной вязкости, а также пластичности материала.

Интересным является и тот факт, что во многих нормативных документах появление цветов побежалости не является признаком некачественной работы или дефекта при сварке. В то же время в таких документах идет речь о том, что сама побежалость мешает проведению качественного контроля и поэтому ее рекомендуют удалять.

Тем не менее в некоторых видах технической документации для сварки металлов говорится, что побежалость все же является дефектом.

Но здесь скорее всего возникает путаница, так как для некоторых типов сплавов, например, титана, появление цветов побежалости действительно можно считать дефектом, свидетельствующим о недостаточном уровне газовой защиты.

Но когда речь заходит о низкоуглеродистых сталях, то побежалость никак нельзя назвать дефектом.

Что нужно знать о цветах побежалости для нержавеющей стали?

При проведении сварки нержавеющего стального сплава радужные цвета швов могут возникать при более широком диапазоне нагрева (от 300 до 700 градусов). Цвет может варьироваться от синего до светло-желтого в зависимости от степени нагрева.

Но в случае коррозионностойких сталей это признак, указывающий на то, что был нарушен слой оксида хрома, выполняющий функцию защиты металлического изделия от возникновения ржавчины.

Поэтому какой бы цвет сварного шва не возникал бы в этом случае, следует помнить, что в последствии может возникнуть коррозия.

Обеспечить высокое качество сварного шва сможет правильный подбор сварочного аппарата и выбор режима сваривания. Большую роль играет и качество газов, используемых для обеспечения защитной газовой среды. Ознакомиться с каталогом технических газов можно на сайте компании «ПРОМТЕХГАЗ» по ссылке https://idealgaz.ru/.

Кроме того, вас может заинтересовать наша отдельная статья, посвященная особенностям обслуживания сварочного оборудования.

Что такое закалка, отпуск стали и цвета побежалости

Следы побежалости на металле

Возможно, вам не раз приходилось слышать эти термины, когда речь шла о кованых ножах, да и вообще о сталях. Настало время разобраться, что же они означают.

Закалка, по своей сути – это нагрев готового изделия до определенной температуры с последующим охлаждением с определенной скоростью, а отпуск – это следующий за закалкой дополнительный нагрев до более низких температур с иных режимом охлаждения; каким именно, зависит от марки стали. Скорость регулируется т.н. «закалочной средой» – жидкостью, в которой клинок охлаждается с определенной скоростью: машинное масло, солевые растворы, поток воздуха с и т.п. Например, масло охлаждает со скоростью примерно в 6 раз меньшей, чем циркулирующая вода.

Чтобы перейти к конкретным цифрам, нужно понять, зачем вообще нужны эти два процесса.

Как делают закалку и отпуск

После того, как заготовке клинка придали необходимую форму, ее закаляют. Конечно, все очень индивидуально для разных марок сталей, для конкретных изделий, но в среднем мастера называют температурой нагрева под закалку около 700–800 градусов Цельсия. Оптимальный цвет изделия в таком случае будет алым или вишневым.

Если краснота уходит, уступая место оранжевым и желтым оттенкам, температура, скорее всего, перевалила за отметку 1 100 градусов – это для большинства сталей уже многовато.

Белый цвет говорит о том, что температура достигла как минимум 1 300 градусов, и для закалки она не подходит – при ней произойдет перекал; в этом случае вернуть стали прочность будет невозможно.

Именно эти цвета и называются цветами каления. Мы встретимся с ними еще раз – когда будем рассматривать отпуск.

Цвета каления показывают нам температуру, которой достигла заготовка. Их не следует путать с цветами побежалости – оттенками окислов

Когда клинок закален, он приобретает высокую твердость, но теряет при этом в прочности. Теперь прочность необходимо вернуть: этой цели и служит отпуск.

Отпуск, как мы помним, это повторное нагревание до более низких температур с последующим охлаждением; добавим к этому, что между повторными нагреваниями следует и полное остывание клинка – естественным путем или же путем охлаждения его в солевом растворе или масле. Температуру нагрева для отпуска выбираем следующим образом.

  • Высокотемпературный отпуск, скорее всего, нам не нужен – он делается для деталей, которые подвергаются не столько деформациям, сколько ударным нагрузкам, а это явно не относится к ножам. Тем не менее, скажем о нем, что его температурные границы – это 500–680 градусов.
  • Среднетемпературный отпуск – это прогрев до 350–500 градусов; это тоже много, подойдет разве что для метательных ножей.
  • Низкотемпературный отпуск – то, что нужно. Прогрев здесь идет до 250 градусов. Конечно, нож не будет таким стойким к боковым ударным нагрузкам, но ведь это нам и не нужно: мы уже достигли необходимой твердости при закалке, а сейчас нас интересует прочность. При такой температуре она получится в самый раз.

Нужную температуру снова покажут цвета каления: оптимальным в данном случае (для ножа) будет светло-желтый цвет.

После каждого этапа, на котором появляются продукты окисла (цвета побежалости), изделие следует охлаждать в соленой воде или масле. В чистой воде заготовку не следует охлаждать ни после закаливания, ни во время отпуска – из-за слишком высокой скорости охлаждения изделие может дать трещины.

Ни вода, ни масло полностью не соответствуют необходимым требованиям к закалке углеродной стали: быстрое охлаждение до 550 °С и более медленное с 300 °С до 200 °С. Поэтому воду используют в комбинации с маслом: сперва в воду, а потом в масло. Такой способ применяют на инструментальных сталях и именуют «в масло через воду».

А вот легированные стали можно закалять только в масле.

Цвета побежалости на клинке коллекционного ножа «Зомби»– неудаленные после отпуска окислы

Выбор стали для закалки

Для начала условно разделим все стали на высокоуглеродистые и легированные.

Все стали – это сплавы железа с углеродом и различными легирующими элементами; от того, преобладает ли в ней один углерод или в значительном количестве присутствуют и легирующие элементы, и будет зависеть название стали.

Нельзя сказать, что та или иная группа хуже или лучше поддается закалке; у них изначально очень разные характеристики и разные задачи, поэтому мы просто расскажем о закаливании тех и других сталей.

Закалка углеродистых сталей

С этой сталью, как и с изделиями из нее, накоплен огромный опыт работы. Сама по себе она требует меньших температур закалки, чем легированная различными элементами – у нее и без этого довольно высокие показатели твердости и прочности, которые так ценятся на рынке.

  • Низкоуглеродистые стали закаливают при температурах от 727 до 950 °С.
  • Средне- и высокоуглеродистые стали закаливают при температурах от 680 до 850 °С.

Нужно помнить, что стали с совсем низким содержанием углерода закалке вообще не поддаются.

Если мы желаем изготавливать и закалять в домашних условиях клинок из углеродистых сталей, нам подойдут следующие марки.

Российские:

Американские:

Эти марки при правильной термообработке характеризуются большой прочностью и твердостью, хотя и низкой устойчивостью к коррозии.

Закалка легированных сталей

Помимо железа и углерода в таких сталях содержится значительное количество различных легирующих элементов, которые придают сплаву особые свойства, нужные в той или иной сфере.

  • Хром превращает сталь в коррозионностойкую, если его содержание превышает 12–16 %.
  • Молибден и никель повышают прочность стали и ее способность выдерживать высокие нагрузки.
  • Ванадий улучшает износостойкость сплава и придает клинкам из него способность держать необычайно острую заточку.

Ввиду наличия в сплаве этих элементов сталь обладает худшей теплопроводностью, чем чистая углеродистая, поэтому: 1) для нагрева и охлаждения ей понадобится больше времени – если ускорять процесс искусственно, то по сплаву могут пойти трещины; 2) для закалки ей нужна большая температура – от 850 до 1 100 °С.

К сожалению, правильная термообработка сложнолегированных сталей достаточно трудна, так как для придания клинку высоких рабочих свойств нужны и точная температура, и специальное оборудование для глубокого охлаждения. Поэтому закалить их качественно «на глазок» не получится.

К наиболее распространенным маркам относятся следующие:

  • 420;
  • 440А;
  • D2;
  • ATS34;
  • CPM S320V.

О последнем образце можно сказать, что он исключительно износостоек.

Закалка ножевой стали в домашних условиях

Для простых углеродистых сталей даже в кустарных условиях можно сделать удовлетворительную закалку, главное – вооружиться правильными знаниями.

В качестве исходников можно использовать отслужившие инструменты, рессоры и напильники; следите, чтобы на них не было ржавчины. Заготовка из новенького переплавленного металла, конечно, лучше, так как детали, которые долго служили, имеют такое качество, как усталость, что снижает их прочность.

Хотя для качественных материалов достаточно провести отжиг, который заключается в нагреве стали, выдержке при определенной температуре и последующем медленном охлаждении вместе с печью или в песке со скоростью два-три градуса в минуту.

В результате отжига образуется устойчивая структура, свободная от остаточных напряжений.

И для отжига, и под нагрев детали под закалку можно использовать самодельный горн из ямы, обложенной кирпичами, из паяльной лампы и трубы. В идеале, конечно, пользоваться муфельной печью.

Проверить в домашних условиях, дошла ли закалка до нужной степени, просто: можно провести напильником по закаленному изделию – если закалка не прошла до конца, напильник просто прилипнет к ножу. Перекал проверятся в кустарных условиях сильным ударом заготовки по твердому предмету – камню или рельсу: перекаленный клинок разлетается при таком ударе на части.

Цвета побежалости металлов

Следы побежалости на металле

Цвета побежалости – спектр цветов, образующихся на поверхности железных сплавов в результате появления окисной пленки. Они образуются при нагревании поверхностей из металла до определенных температур без участия воды. Цвета побежалости являются дефектом сварного соединения.

Происхождение

В природе цвета побежалости образуются на поверхности многих минералов, включая пирит и халькопирит. Из-за окисления они покрываются тонкой оксидной пленкой, преломляющий солнечный свет. В результате интерференции поверхности металла окрашивается в разные цвета.

Яркость побежалости зависит от толщины оксидной пленки и длины волны. Наиболее яркие цвета побежалости образуются на медных минералах. Также цвет зависит от качественного состава металла. Если в элементе присутствует большое количество ионов металлов, то он окрашивается в синие цвета.

При наличии хромофоров минералы становятся красными.

Также цвета побежалости могут образовывать в естественных условиях на поверхностях старых стекол или монет. Изменение окраса может быть обусловлено длительным контактом этих материалов с землей.

Если на них присутствует жировая пленка, то они окрашиваются в радужный цвет. Побежалость скрывает настоящий цвет металла. Поэтому нельзя определять его истинный окрас на свежем изломе.

Рекомендуется определять цвет при рассмотрении оксидной пленки.

Искусственно цвета побежалости образуются на поверхности металлических заготовок при сварке или закалке. Они появляются при нагревании металлов до критических температур без участия молекул воды или иных жидкостей. Во время нагревания происходит процесс образования оксидной пленки.

Ее толщина составляет несколько молекул и уменьшается по мере нагрева. Это обусловлено явлением диффузии – процессом проникновения мельчайших частиц одного химического элемента в другой. В данном случае происходит взаимодействие атомов металла и кислорода.

На углеродистых сталях пленки из оксидов возникают быстрее, чем на легированных.

Процедура покрытия стали и железа слоем оксидной пленки называется воронением. После проведения этой процедуры повышается коррозийная стойкость изделия. Обработанные детали не покрываются ржавчиной. Процедура воронения позволяет придать изделию окрас, даже если металлическая поверхность по условиям эксплуатации не подлежит покраске.

Во время воронения заготовку протирают минеральным маслом и нагревают на железном листе. После выгорания масляной жидкости на заготовке появляются цвета побежалости. Для нужного окраса необходимо нагреть деталь до соответствующей температуры. Получившийся слой окисла является влагоустойчивым и не подвергается воздействию воздуха.

На скорость образования окисных пленок влияют следующие факторы:

  1. Структура поверхности: закаленные детали окисляются с большей скоростью.
  2. Загрязненность изделия: поверхности, покрытые маслом, при длительном нагреве обугливаются, что приводит к возникновению сажи. По этой причине образуется неровная и тонкая оксидная пленка.
  3. Наличие шероховатостей: если нагревается заготовка с шершавой поверхностью, то оксидная пленка получается плотной. Если перед процедурой термообработки отполировать деталь, то образуется тонкая пленка из оксидов.
  4. Оборудование для нагрева: если при термообработке применяются специальные нагревательные печи, способные поддерживать устойчивую температуру, то окисная пленка будет плотной. В бытовых условиях можно также использовать духовые шкафы, газовые горелки или металлургические печи (горны).

Тонкие оксидные пленки поглощают световые волны с меньшей длиной волны, но отражают – с большей. Цвет металлических деталей меняется в зависимости от температуры и плотности оксидной пленки. Чем толще оксидная пленка, тем светлее окраска. Синий или фиолетовый цвет получается, когда из спектра отражаются наиболее длинные волны.

Если пленка из оксидов отражает волны с малой длиной волны, то металлическая поверхность становится желтой. Светлые цвета соответствуют высокой температуре нагрева, светлые – более низкой.

По этой причине многие мастер часто определяют при помощи цветов побежалости степень закалки изделий, стальной стружки и режущих инструментов, применяемых во время проведения токарных работ.

Несмотря на эти факторы, при помощи цветов побежалости нельзя точно определить температуру металла, потому что на величину этого показателя оказывают влияние следующие факторы:

  • время нагрева: промежуток времени, в течение которого металлическая деталь нагревается до температуры окружающей среды при отсутствии теплоотдачи.
  • наличие различных примесей в составе металла;
  • особенности освещения в помещении, где проводилась сварка или закалка заготовок;
  • скорость разогревания: изменение температуры изделия в единицу времени при его нагревании.

В современной промышленности контроль температуры производится при помощи специальных приборов – пирометров. Они оснащены специальными датчиками, определяются степень нагрева заготовки при помощи лазера.

Цвета побежалости используются при изготовлении рабочих инструментов, лазерной маркировке и внешней обработке изделий из железа, меди, алюминия и латуни.

Если требуется изготовить инструментарии с высокой плотностью (бритвенные лезвия, предметы для проведения хирургических операций, режущие кромки резцов и грабштихели), то побежалость должна быть яркого цвета: красного, оранжевого или желтого.

До пурпурных и зеленых тонов нагревают инструменты, применяющихся в деревообрабатывающем секторе. Для достижения упругости при изготовлении пил, ножей, вил и пружин необходимо нагреть заготовки до появления синих или черных цветов.

В процессе нагревания металлическая заготовка становится гибкой, что позволяет мастеру придать ей необходимую форму. После данного процесса изделие закаляется при определенных температурах.

Согласно рекомендациям специалистов, оптимальной температурой для закалки металлов является 700–800 °C. В этом случае изделие окрашивается в разные оттенки красного или розового цветов. При превышении этих значений на 300 °C заготовка становится оранжевой или желтой.

При больших температурах происходит перекал, что негативно сказывается на прочности изделия.

Закалка улучшает следующие параметры металлической поверхности:

  1. Твердость: этот показатель является номинальным. Он прописан в шкале Роквелла и измеряется в HRC. Твердость определяет степень сопротивляемости металла к механическим повреждениям. На мягких изделиях при длительном соприкосновении с иными поверхностями остаются следы, что ухудшает их режущие свойства. Твердость ножей европейского образца составляет 60 HRC, азиатских – 70 HRC.
  2. Упругость: данный параметр определяет степень деформации металла при изгибах и ударах. Если сталь закалена, при изгибе на 10–30° она вернется в исходное положение. При перегреве снижается упругость поверхности, что приводит к поломке инструментов.
  3. Износостойкость: данный критерий показывает общую стойкость металла (сопротивление абразивному износу, стойкость к большим нагрузкам). При правильной закалке изделие сможет стабильно функционировать в течение более длительного срока.

После закалки заготовка приобретает высокую твердость. Для восстановления ее прочности необходимо провести процедуру отпуска, представляющую собой повторную термообработку детали.

Металлическое изделие нагревается до более низких температур и охлаждается. Между закалкой и охлаждением также осуществляется полное остывание металлической поверхности при помощи его погружения в раствор соли или в масло.

При выборе отпуска необходимо учитывать следующие особенности:

  1. Для изделий, подвергающимся деформациям или ударным нагрузкам, нужно использовать высокотемпературный отпуск: до 700 °C.
  2. Для легких клинков используется среднетемпературный отпуск: до 500 °C.
  3. Для обеспечения оптимальной твердости применяется низкотемпературный отпуск: до 250 °C. Но в этом случае изделие не сможет выдерживать высокие ударные нагрузки и будет легко деформироваться.

Температура цветов побежалости и каления

Во время отпуска возникают цвета каления. По ним можно определить, до какой температуры нагрелась заготовка. В отличие от побежалости, цвета каления меняются в процессе охлаждения металлической поверхности. Переход между цветами осуществляется в строгой последовательности, но с быстрой скоростью, поэтому мастер должен тщательно контролировать процесс термообработки.

Сделай сам
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: