Порошки тугоплавких металлов

Содержание
  1. Тугоплавкие металлы
  2. Свойства тугоплавких металлов
  3. Производство тугоплавких металлов
  4. Применение тугоплавких металлов
  5. Ниобий
  6. Тантал
  7. Рений
  8. Хром
  9. Порошки цветных металлов.Купить сегодня. Лучшая цена от поставщика. / Auremo
  10. Свойства
  11. Марки
  12. Порошок молибдена
  13. Порошок вольфрама
  14. Карбид вольфрама
  15. Поставщик
  16. Купить по выгодной цене
  17. Изделия из тугоплавких металлов
  18. Разногласия в критическом параметре
  19. Сравнительная таблица степени тугоплавкости чистых металлов
  20. Общие свойства жаропрочных материалов
  21. Получение тугоплавких материалов
  22. Применение тугоплавких материалов
  23. Порошки тугоплавких металлов — Справочник металлиста
  24. Характеристика
  25. Получение
  26. Актуальность
  27. Применение
  28. Вольфрам
  29. Сплавы на основе вольфрама
  30. Купить, выгодная цена
  31. Тугоплавкие металлы — описание, изделия из тугоплавких Ме
  32. Тугоплавкие металлы — список и область применения
  33. Тугоплавкость металлов
  34. Тугоплавкие металлы и сплавы
  35. Тугоплавкие и легкоплавкие металлы
  36. Вольфрам – самый тугоплавкий металл
  37. Исторические сведения
  38. Режущие свойства вольфрама
  39. Применение вольфрама

Тугоплавкие металлы

Порошки тугоплавких металлов

Тугоплавкие металлы были выделены в отдельный класс благодаря объединяющему их свойству — высокой температуре плавления. Она выше, чем у железа, которая равна 1539 °C.

Поэтому металлы данной группы и получили такое название. Они принадлежат к числу так называемых редкоземельных элементов.

Так, например, по распространённости в земной коре ниобий и тантал составляют 3%, а цирконий только 2%.

Тугоплавкие металлы

По температурному показателю плавления кроме перечисленных, к ним относятся металлы, так называемой платиновой группы. Ещё их называют благородными или драгоценными.

Определённая схожесть строения атома обусловила схожесть их свойств. На основании этого можно обобщить некоторые черты проявления таких металлов в земной коре и определиться с технологией их добычи, производства и переработки.

Свойства тугоплавких металлов

За счёт того, что они расположены в соседних группах периодической таблицы, физические свойства у тугоплавких металлов достаточно близкие:

  • Плотность металла колеблется в интервале от 6100 до 10000 кг/м3. По этому показателю выделяется только вольфрам. У него он равен 19000 кг/м3.
  • Температура плавления. Она превышает температуру плавления железа и колеблется от 1950 °С у ванадия до 3395 °С у вольфрама.
  • Удельная теплоёмкость у них незначительно отличается друг от друга и находится в пределах от 200 до 400 Дж/(кг-град).
  • Коэффициент теплопроводности сильно меняется от элемента к элементу. Если у ванадия он равен 31 Вт/(м-град), то у вольфрама он достигает величины в 188 Вт/(м-град).

Физические свойства тугоплавких металлов

Химические свойства также достаточно схожие:

  • Очень похожее строение атома.
  • Обладают высокой химической активностью. Это свойство определяет основные трудности при сохранении стабильности их соединений.
  • Прочность межатомных связей определяет высокую температуру плавления. Это обстоятельство объясняет высокую механическую прочность, твёрдость и электрические характеристики (в частности сопротивление).
  • Проявляют хорошую устойчивость при воздействии различных кислот.

К основным недостаткам тугоплавких металлов относятся:

  • Низкая коррозийная стойкость. Процесс окисления происходит достаточно быстро. Его разделяют на две последовательные стадии. Непосредственное взаимодействие металла с кислородом окружающего воздуха, что приводит к образованию оксидной плёнки. На второй стадии происходит процесс диффузии (проникновения) атомов кислорода через образовавшуюся оксидную плёнку.
  • Трудности со свариваемостью тугоплавких металлов. Это вызвано высокой химической активностью к окружающему воздуху при высоких температурах, хрупкостью при насыщении различными примесями. Кроме того, трудно определить точку перегрева и практически невозможно контролировать повышение предела текучести.
  • Трудности их получения использования в чистом виде без примесей.
  • Необходимость применения специальных покрытий от быстрого окисления. Для сплавов, основу которых составляет вольфрам и молибден, разработаны силицидные покрытия.
  • Трудности, связанные с механической обработкой. Для качественной обработки их сначала необходимо нагреть.

Производство тугоплавких металлов

Все способы производства тугоплавких металлов основаны на методиках так называемой порошковой металлургии. Сам процесс происходит в несколько этапов:

  1. На начальном этапе получают порошок металла.
  2. Затем методами химического восстановления (обычно аммонийных солей или оксидов) выделяют требуемый металл. Такое выделение получается в результате воздействия на порошок водорода.
  3. На завершающем этапе получают химическое соединение, называемое гексафторидом соответствующего металла, и уже из него сам металл.

Применение тугоплавких металлов

Начиная со второй половины двадцатого века тугоплавкие металлы стали применяться во многих отраслях промышленного производства. Порошки тугоплавких металлов используются для производства первичной продукции. Тугоплавкие металлы вырабатывают в виде проволоки, слитков, арматуры, прокатного металла и фольги.

Отдельное место такие металлы занимают в технологии выращивания лейкосапфиров. Они относятся к классу монокристаллов и называются искусственными рубинами.

Изделия из тугоплавких металлов входят в состав бытовых и промышленных электрических приборов, огнеупорных конструкций, деталей для двигателей авиационной и космической техники. Особое место занимают тугоплавкие металлы при производстве деталей сложной конфигурации.

Этот металл открыли в далёком 1781 г. Его температура плавления равна 3380 °С. Поэтому он на сегодняшний день является самым тугоплавким металлом. Получают вольфрам из специального порошка, подвергая его химической обработке.

Этот процесс основан на прессовании с последующим спеканием при высоких температурах. Далее его подвергают ковке и волочению на станках. Это связано с его наибольшей тугоплавкостью. Так получают волокнистую структуру (проволоку).

Она достаточно прочная и практически не ломается. На конечном этапе его раскатывают в виде тонких нитей или гибкой ленты. Для проведения механической обработки необходимо создать защитную среду из инертного газа. В этой среде температура должна превышать 400 °С.

При температуре окружающей среды он приобретает свойства парамагнетика. Ему присущи следующие недостатки:

  • сложность в создании условий для механической обработки;
  • быстрое образование на поверхности оксидных плёнок. Если в контакте имеются серосодержащие вещества, образуются сульфидные плёнки;
  • создание хорошего электрического контакта между несколькими деталями возможно только при создании большого давление.

Вольфрам

Для улучшения свойств вольфрама (тугоплавкости, устойчивости к коррозии, износостойкости) в него добавляют легирующие металлы. Например, рений и торий.

Металл используется для производства нитей накаливания для  осветительных и сушильных ламп. Его добавляют в сварочные электроды, элементы электронных ламп и рентгеновских трубок. Также применяется при производстве элементов ракет, в реактивных двигателях, артиллерийских снарядах.

По внешнему виду и характеристикам очень похож на вольфрам. Главным отличием является то, что его удельный вес почти в два раза меньше. Его получают аналогичным образом.

Он широко применяется в радиоэлектронной промышленности, для изготовления различных испарителей в вакуумной технике, разрывных электрических контактов. Как и вольфрам, он является парамагнетиком.

Для изготовления электродов стекловаренных (стеклоплавильных) печей он просто незаменим.

Ниобий

Температура плавления ниобия составляет 2741 °С. По своим химическим, физическим и механическим свойствам очень напоминает тантал. Он достаточно пластичен. Обладает хорошей свариваемостью и высокой теплопроводностью даже без дополнительного нагрева. Как и все остальные металлы его получают из порошка. Конечные заготовки из ниобия – проволока, лента, труба.

Ниобий

Сам металл и его сплавы демонстрируют эффект сверхпроводимости. Его широко применяют для изготовления анодов, экранных и антидинатронных сеток в электровакуумных приборах. Благодаря хорошей пористости, его успешно применяют в качестве газопоглотителей. В микроэлектронике он идёт на изготовление резисторов в микросхемах.

Ниобий хорошо себя проявил в качестве легирующей добавки. Используется при создании различных жаростойких конструкций, агрегатов работающих в агрессивных и радиоактивных средах.

Из сплава стали и ниобия изготавливают некоторые элементы реактивных двигателей.

Благодаря его свойству не взаимодействовать с радиоактивными веществами при высоких температурах, например, с ураном, применяется при изготовлении оболочек для урановых элементов, отводящих тепло в реакторах.

Тантал

Внешне имеет светло-серый цвет с небольшим голубоватым оттенком. Температура плавления близка к 3000 °С. Хорошо поддается основным видам обработки. Его можно ковать, прокатывать, производить волочение для изготовления проволоки.

Эти операции не требуют значительного нагрева. Для удобства дальнейшего использования тантал изготавливают в форме фольги и тонких листов.

Повышение температуры вызывает активное взаимодействие со всеми газами, кроме инертных – с ними никаких реакций не наблюдается.

Тантал

Из тантала производят внутренние элементы генераторных ламп (магнетронов и клистронов). Он активно используется при производстве пластин в электролитических конденсаторах. Очень удобен для изготовления пленочных резисторов. Активно применяется для изготовления так называемых лодочек в испарителях, в которых осуществляется термическое напыление различных материалов на тонкие пленки.

Ввиду ряда своих уникальных качеств, считается незаменимым в ядерной, аэрокосмической и радиоэлектронной промышленности.

Рений

Был открыт позже всех из перечисленных ранее металлов. Он полностью оправдывает свое название «редкоземельный металл», потому что находится в небольших количествах в составе руды других металлов, таких как платина или медь.

В основном его используют как легирующую добавку. Полученные сплавы приобретают хорошие характеристики прочности и ковкости. Это один из самых дорогих металлов, поэтому его применение приводит к резкому увеличению цены всего оборудования.

Те не менее, его применяют в качестве катализатора.

Хром

Хром — уникальный металл. Широко применяется в промышленности благодаря своим замечательным свойствам: прочности, устойчивости к внешним воздействиям (нагреву и коррозии), пластичности. Достаточно твердый, но хрупкий металл. Имеет серо-стальной цвет. Весь необходимый хром извлекают из руды двух видов хромита железа или окиси хрома.

Основными его свойствами являются:

  • Даже при нормальной температуре обладает почти идеальным антиферромагнитным упорядочением. Это придаёт ему отличные магнитные свойства.
  • По-разному реагирует на воздействие водорода и азота. В первом случае сохраняет свою прочность. Во втором, становится хрупким и полностью теряет все свои пластические свойства.
  • Обладает высокой устойчивостью против коррозии. Это происходит благодаря тому, что при взаимодействии с кислородом на поверхности образуется тонкая защитная плёнка. Она служит для защиты от дальнейшей коррозии.

Кристаллы хрома

Он используется в металлургической, химической, строительной индустриях. Хром, как легирующая добавка, обязательно используется для производства различных марок нержавеющей стали. Особое место занимает при изготовлении такого материала как нихром.

Этот материал способен выдерживать очень высокие температуры. Поэтому его используют в различных нагревательных элементах. Хромом активно покрывают поверхности различных деталей (металла, дерева, кожи). Это процесс осуществляется с помощью гальваники.

Токсичность некоторых солей хрома используют для сохранения древесины от повреждения, вредного воздействия грибков и плесени. Они также хорошо отпугивают муравьёв, термитов, насекомых разрушителей деревянных конструкций. Солями хрома обрабатывают кожу. Хром применяется при изготовлении различных красителей.

Благодаря высокой теплостойкости его используют как огнеупорный материал для доменных печей. Каталитические свойства соединений хрома успешно используют при переработке углеводородов. Его добавляют при производстве магнитных лент наивысшего качества. Именно он обеспечивает низкий коэффициент шума и широкую полосу пропускания.

Порошки цветных металлов.Купить сегодня. Лучшая цена от поставщика. / Auremo

Порошки тугоплавких металлов

Сегодня порошки металлов часто применяются там, где создать сплавы традиционными методами трудно или невозможно, например, при большой разнице температур плавления металлов. В зависимости от состава, порошковые сплавы можно использовать в самых различных сферах современного производства.

Порошковый металл представляет собой аморфную массу очень мелких металлических частиц.

В зависимости от размеров частиц металлические порошки делятся на ультратонкие (размер зерен до 0,5 мкм), очень тонкие (0,5 — 10 мкм), обычной тонкости (10 — 40 мкм), средней тонкости (40 — 150 мкм), грубые (150 — 500 мкм).

По типу и форме частиц металлические порошки подразделяются на:

равноосные с одинаковыми размерами по всем направлениям;

волокнистые — обладают максимальными размерами по длине;

плоские — обладают небольшой толщиной;

Свойства

Металлические порошки характеризуются прессуемостью, насыпным весом, текучестью. Текучесть определяется скоростью прохождения частиц порошка через отверстия определённого сечения. Высокая текучесть позволяет равномернее и быстрее наполнять пресс-форму.

Это качество зависит от величины частиц, удельного веса, шершавости поверхности частиц и их формы. Частицы со сложной формой и с шероховатой поверхностью имеют пониженную текучесть. Прессуемость — это способность порошка приобретать под действием давления требуемую форму и сохранять ее.

Чем сложнее форма частиц, чем выше пластичность, тем выше прессуемость. Масса насыпанного свободно порошка в единицу объёма отражает насыпной вес. Он зависим от удельного веса материала, а также плотности заполнения всего объема частицами порошка.

Большой насыпной вес повышает плотность заготовок, они прессуются лучше, что является очень важным в изготовлении деталей машин. Из металлических порошков с малым насыпным весом, изготавливаются высокопористые изделия.

Марки

Железный порошок делится по размеру зерен на 4 класса: ОМ — очень мелкий, М — мелкий, С — средний и К — крупный. Обозначаются железные порошки следующими марками: ПЖ2К, 4С и т. п., где под буквами «ПЖ» подразумевается порошок железный, а цифры означают группу. Буква «К» и «С» — класс зернистости.

Сегодня современной промышленностью производятся следующие марки порошков из цветных металлов: ПНК1, ПНЭ1, ПНК2, ПНЭ2 — никелевые, ПМА, ПМ, ПМС1, ПМС2 — медные, ПО — оловянные, ПК1,2 — кобальтовые, ПС1 и ПС2 — серебряные и пр.

 Также металлические порошки производятся из углеродистых, легированных сталей, быстрорежущей и нержавеющей латуни, стали, бронзы и других металлов.

Порошок молибдена

Молибден (Mo) — 42-й элемент периодической таблицы Дмитрия Менделеева. Это крайне тугоплавкий металл светло-серого цвета. Обычно его используют как добавку к жаростойким сплавам, чтобы улучшить их технологические свойства.

Его плотность составляет приблизительно 10,2 г/см3, t плавления = 2620 градусов, а температура кипения около 4630 градусов. Среди различной продукции из этого металла (проволока, листы, круг) большое применение имеет порошок марки МПЧ с содержанием молибдена не менее 99,5%.

92 процента составляет зерно порошка величиной 5 мкм. Обычно он является сырьем для дальнейшего производства. Приёмы порошковой металлургии позволяют получать штабики из молибдена самой различной величины, которые Вы можете приобрести у нас.

Штабики — представляют собой специальную заготовку для изготовления прутков, проволоки и листов.

Порошок вольфрама

Вольфрам (W) — твердый тугоплавкий металл темно-серого цвета, 74-й элемент таблицы Д. И. Менделеева.

Среди разнообразной продукции из этого металла (проволока, листы, круг) большое значение имеет порошок, без которого невозможно получить всем известную нить накаливания, применяемую в лампочках.

Вольфрам незаменим как легирующая добавка для сверхпрочных сталей, а также для жаровыносливых и износостойких сплавов. Карбид вольфрама — главный компонент твердых сплавов типа ВК.

Карбид вольфрама

WC — химическое соединение тяжелого вольфрама с углеродом. Главным свойством этого материала является очень большая прочность, которая сохраняется при крайне высоких температурах.

Этот материал применяются как основа при изготовлении самых твердых сплавов. Из всех применяемых сплавов нужно выделить сплавы ряда ВК, а конкретно ВК8 и ВК6, Цена указана в каталоге, оформить покупку можно через заявку на сайте.

Обычно эти твердые сплавы получаются соединением в одной структре порошка метала-связки и порошков карбида.

Поставщик

Где купить порошок цветных металлов оптом или в рассрочку? Поставщик «Ауремо» предлагает купить порошок цветных металлов на выгодных условиях. Большой выбор полуфабрикатов на складе. Соответствие ГОСТ и международным стандартам качества. Всегда в наличии порошок цветных металлов, цена — оптимальная от поставщика. Для оптовых заказчиков цена — льготная.

Купить по выгодной цене

Большой ассортимент порошковых металлов на складе «Ауремо» соответствует ГОСТ и международным стандартам качества. Качество обеспечивается абсолютным соблюдением всех технологических производственных норм.

Предлагаем продукцию со специализированных складов с доставкой в любой город… Наши специалисты упакуют, укомплектуют и промаркируют ваше приобретение, а также проследят за доставкой. Вся наличная продукция сертифицирована. Цена зависит от объёма заказа и дополнительных условий.

Всегда в наличии порошок цветных металлов, цена — наилучшая в данном сегменте поставок. Поставки осуществляются в кратчайшие сроки. Купить порошок цветных металлов сегодня. При оптовых покупках предоставляются льготные скидки.

Изделия из тугоплавких металлов

Порошки тугоплавких металлов

Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.

Разногласия в критическом параметре

Одни источники устанавливают пороговую величину как 4000 F. В переводе на привычную шкалу это дает 2204 0С. Согласно этому критерию, к жаропрочным относятся только пять элементов: вольфрам, ниобий, рений, тантал и молибден. Например, температура плавления вольфрама составляет 3422 0С.

— плавка вольфрама водородной горелкой

Другое утверждение позволяет расширить класс температуростойких материалов, поскольку принимает за точку отсчета температуру плавления железа – 1539 0С. Это позволяет увеличить список еще на девять элементов, включив в него титан, ванадий, хром, иридий, цирконий, гафний, родий, рутений и осмий.

Существует еще несколько пороговых величин температуры, однако они не получили широкого распространения.

Сравнительная таблица степени тугоплавкости чистых металлов

Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала.

Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам.

Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.

Пороговые величины остальных соединений приведены ниже:

  • рений 3186;
  • осмий 3027;
  • тантал 3014;
  • молибден 2623;
  • ниобий 2477;
  • иридий 2446;
  • рутений 2334;
  • гафний 2233;
  • родий 1964;
  • ванадий 1910;
  • хром 1907;
  • цирконий 1855;
  • титан 1668.

Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала.

Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей.

Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.

Хром в чистом виде

Общие свойства жаропрочных материалов

Относительная схожесть физико-химических характеристик данных элементов, обусловлена общностью атомного строения и тем, что они оказываются переходными металлами. Напротив, различия в свойствах, связаны с их принадлежностью к широкому спектру групп Периодической таблицы: IV – VII.

Базовая общая характеристика тугоплавких материалов – прочные межатомные связи. Для их разрыва требуется высокая энергия, которая и обуславливает температуру плавления в тысячи градусов по Цельсию. Дополнительно, данное свойство сказывается на высоких значениях таких параметров тугоплавких металлов, как: твердость, механическая прочность, электрическое сопротивление.

Следующая характеристика, объединяющая данные элементы, – высокая химическая активность.

Она связана с общей тенденцией тугоплавких металлов образовывать химические связи посредством свободной p- и частично заполненной d-орбитали, отдавая электроны с наружных уровней s и d.

Это свойство затрудняет получение чистых тугоплавких металлов, разбивая технологическое производство на несколько этапов.

Строение жаропрочных элементов также идентично, все они характеризуются объемно-центрированной кубической кристаллической решеткой. Для этой структуры характерно «охрупчивание». Исключение составляет рений, обладающий гексагональной ячейкой. Переход в хрупкое состояние для каждого металла происходит при определенной температуре, регулирование которой достигается при помощи легирования.

Каждый тугоплавкий металл, по определению жаропрочный, однако не любой из них жаростойкий. Большинство тугоплавких металлов устойчивы к окислению и действию агрессивных сред: кислоты, щелочи; в обычных условиях.

Однако, с повышением температуры до 400 0С их активность аномально возрастает. Это требует создания определенных условий эксплуатации.

Поэтому, изделия из тугоплавких металлов, при повышенных температурах использования, часто помещают в атмосферу инертных газов или добиваются степени разреженности воздуха до условий вакуума.

Получение тугоплавких материалов

Как отмечалось ранее, основной препятствующий фактор производству жаропрочных металлов их высокая химическая активность, препятствующая выделению элементов в чистом виде.

Основной технологией получения остается порошковая металлургия. Данная методика позволяет получать порошки тугоплавких металлов различными способами:

  1. Восстановление триоксидом водорода. Процесс производится в несколько этапов, внутри многотрубных печей при 750 – 950 °С. Технология применима под порошки тугоплавких металлов: вольфрам и молибден.
  2. Восстановлением водородом перрената. Схема реализуется в производстве металлического рения. Рабочие температуры составляют около 500 °С. Заключительная стадия предусматривает отмывание порошка от щелочи. Для этого последовательно используется горячая вода и раствор соляной кислоты.
  3. Использование солей металлов. Технология развита для выделения молибдена. Основным сырьем выступает аммонийная соль металла и его металлический порошок, вводимый в смесь на уровне 5 — 15% от массы. Состав проходит термическую обработку 500 – 850 °С в проточном инертном газе. Восстановление металла проходит в атмосфере водорода при температурах 800 – 1000 °С.

Производство тугоплавких металлов — порошковая металлургия

Экскурсия на производство

Способы получения жаропрочных металлов продолжают совершенствоваться, как и химическая технология тугоплавких неметаллических и силикатных материалов, что связано с развитием ядерной энергетики, авиастроения, появлением новых моделей ракетных двигателей.

Одно из крупнейших предприятий по производству вольфрама на территории РФ – унечский завод тугоплавких металлов. Этот предприятие относительно молодое, строительство его началось в 2007 году на территории населенного пункта Унеча. Производственный акцент завода направлен на порошки тугоплавких металлов, точнее вольфрама и его карбидов.

В дальнейшем, для получения слитков рассыпчатую массу спекают или сдавливают прессом. Подобным образом порошки тугоплавких металлов обрабатываются для производства жаропрочных изделий.

Применение тугоплавких материалов

Применение чистых жаропрочных металлов имеет приоритеты по ряду направлений:

  • производство космических кораблей;
  • изготовление управляемых снарядов, ракет;
  • электронная и вакуумная техника.

Космическая промышленность

Последний пункт затрагивает электроды электровакуумных радиоламп. Например, высокочистый ниобий используется для производства сеток, трубок электронных деталей. Также из него изготавливаются электроды – аноды электровакуумных приборов.

Электровакуумные радиолампы

Аналогичное применение свойственно молибдену, вольфраму. Эти металлы в чистом виде используются не только как нити накаливания, но и под электроды радиоламп, крючки, подвески электровакуумного оборудования. Монокристаллы вольфрама, напротив, эксплуатируются как подогреватели электродов, в частности катодов, а также при изготовлении электрических контактов, предохранителей.

Чистые ванадий и ниобий используются в ядерной энергетике, где их них изготовлены трубы атомных реакторов, оболочки тепловыделяющих элементов. Область применения высокочистого тантала – химия (посуда и аппаратура), поскольку металл обладает высокой стойкостью к коррозии.

Отдельно следует рассматривать тугоплавкий припой, поскольку он не включает металлов, имеющих высокие температуры плавления. Например, тугоплавкое олово не содержит порошки тугоплавких металлов. В качестве добавок тут используются медь, серебро, никель или магний.

Порошки тугоплавких металлов — Справочник металлиста

Порошки тугоплавких металлов

В этом разделе отражена характеристика следующей продукции:

  • Молибден (проволока);
  • Молибден (круг);
  • Молибден (лист);
  • Вольфрамовый пруток;
  • Вольфрамовые электроды;
  • Вольфрамовая проволока.

Характеристика

Тугоплавкие редкие металлы (с недостроенным электронным d-уровнем) относятся к переходным элементам четвертой, пятой, шестой группы периодической системы Д. И.

Менделеева, Данная особенность определяет целый ряд их химических и физических свойств: тугоплавкость — когда температура плавления может составить от 1660 градусов (t° плавления титана) до 3400 градусов (t° плавления вольфрама), коррозионную стойкость, высокую прочность.

Переменная валентность этих элементов обуславливает многообразие различных химических соединений. Все они могут образовать твердые тугоплавкие карбиды, силициды, бориды.

Получение

Поскольку температура плавления тугоплавких металлов очень высокая, обычно применяют методы электронно-лучевой (дуговой) плавки или метод порошковой металлургии. Дальнейшая технология заключается в обработке полученного порошка либо пористой массы — губки. Спекание производят традиционной для порошковой металлургии электронно-лучевой либо дуговой плавкой.

Актуальность

Промышленное производство почти всех редких тугоплавких металлов по привлекательным рыночным ценам было налажено ещё до средины двадцатого столетия, а во второй половине двадцатого века начало развиваться бурными темпами, вызванными растущими потребностями ракетно-космической, авиационной, атомной промышленности. Сегодня Россия вошла в число неоспоримых лидеров по добыче, а также производству большей части тугоплавких материалов.

Применение

Тугоплавкие металлы имеют общую область использования, в первую очередь — как легирующий компонент твердых жаропрочных сплавов. Многие из этих сплавов используются электронной, электровакуумной техникой.

Целый ряд современных отраслей зависит от конструкционных материалов на основе тугоплавких элементов.

Приборостроение, машиностроение, металлургия, химическая и атомная промышленность, не имеют равноценной альтернативы изделиям на основе титана, кобальта, молибдена, тантала, ванадия.

Вольфрам

Атомный номер — 74, атомный вес — 183,9, Температура плавления составляет 3395 + 15 градусов. Электрическое сопротивление почти в 3 раза ваше, чем у меди.

Этот металл служит основой жаропрочных сплавов, а также самых твердых сталей (быстрорежущих инструментальных). Обработка его (ковка, прокатка, волочение) возможна только после нагревания.

К минусам вольфрама относят очень высокую плотность = 19,3 г/см3., ломкость при низких температурах, малое сопротивление окислению.

Сплавы на основе вольфрама

Вольфрам придает жаропрочность, твердость, износоустойчивость элитным инструментальным сталям. Он буквально незаменим для деталей электровакуумных приборов, броневого покрытия, нитей накаливания.

Его высокая плотность выгодна для противовесов артиллерийских снарядов, для пуль и для скоростных (до 180 тысяч оборотов в минуту) роторов гироскопов, которые стабилизируют полёт баллистический ракеты.

Твёрдые сплавы, созданные на основе карбида вольфрама, являются незаменимыми во время механической обработке сталей и конструкционных неметаллических материалов (точение, фрезерование, долбление и строгание), а также во время бурения скважин. Сульфид вольфрама WS2 является очень качественной и жаростойкой смазкой (до 500 градусов). В производстве твердого электролита жаростойких элементов используется так называемая трехокись вольфрама.

Купить, выгодная цена

При выборе редких и тугоплавких металлов следует учитывать целый ряд факторов. В компании «Auremo» есть широкий выбор жаропрочного проката под заказ.

Сегодня Вы можете на самых выгодных условиях купить проволоку, пруток, круг, трубу из редких и тугоплавких металлов, цена обусловлена технологическими особенностями производства без включения дополнительных затрат.

Наши специалисты всегда готовы помочь с выбором необходимой продукции, от которой зависит работоспособность и надежность будущего оборудования. Мы гарантируем высокое качество нашей продукции и своевременную доставку. На сайте компании отображена вся информация о товарах. Оптовые покупатели получают льготные скидки.

Тугоплавкие металлы — описание, изделия из тугоплавких Ме

Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.

Тугоплавкие металлы — список и область применения

Порошки тугоплавких металлов

Все металлы обладают следующими общими свойствами:

  1. Цвет – серебристо-серый с характерным блеском. Исключение составляют: медь и золото. Они соответственно выделяются красноватым и желтым оттенком.
  2. Агрегатное состояние – твердое тело, кроме ртути, которая является жидкостью.
  3. Тепло- и электропроводность – для каждого вида металлов выражается по-разному.
  4. Пластичность и ковкость – изменяющийся параметр в зависимости от конкретного металла.
  5. Температура плавления и кипения – устанавливает тугоплавкость и легкоплавкость, обладает разными значениями для всех материалов.

Все физические свойства металлов зависят от строения кристаллической решетки, ее формы, прочности и пространственного расположения.

Тугоплавкость металлов

Этот параметр становится важным, когда возникает вопрос о практическом применении металлов. Для таких важных отраслей народного хозяйства, как авиастроение, кораблестроение, машиностроение, основой являются тугоплавкие металлы и их сплавы.

Кроме этого, их используют для изготовления высокопрочного рабочего инструмента. Литьем и выплавкой получают многие важные детали и изделия. По прочности все металлы делятся на хрупкие и твердые, а по тугоплавкости их подразделяют на две группы.

Тугоплавкие металлы и сплавы

Однако исследования не стоят на месте, а потому сейчас большинство свойств тугоплавких элементов можно скорректировать путем их легирования, то есть получения сплавов.

Сплавы на основе неплавких металлов сохраняют свою непревзойденную устойчивость к воздействия высоких температур и сопротивление к деформированию.

При этом они еще и приобретают такие полезные свойства, как большая или меньшая пластичность, коррозионостойкость, жаропрочность, упругость и пр.

Две трети всех неплавких металлов получают из руды, а точнее их так называемых рудных концентратов. Это значит, что помимо основного элемента в руде находится множество вспомогательных.

Прежде чем получится хоть грамм тугоплавкого элемента необходимо кон, химически очистить от всего ненужного, а затем восстановить или, как еще говорят, рафинировать. В зависимости от того, насколько чистый металл нужен, используют дугообразную, электронно-лучевую или плазменную плавку. В последней получаются металлы самого лучшего вида.

Готовые тугоплавкие металлоэлементы представляют собой порошок или гранулы, правда иногда их сразу подвергают обработке и получают тугоплавкие заготовки — листы, пленку, трубы, нити и пр. Получением как заготовок, так и чистых металлов занимаются заводы тугоплавких металлов и сплавов.

Один из старейших в России — ОАО «Опытный завод тугоплавких металлов и твёрдых сплавов» — работает в данной сфере с 48-го года XX века. Еще один советский, а ныне Узбекский , существует с 1956 года.

Применение тугоплавких металлов основано на максимально эффективном использовании их природных свойств.

Среди отраслей народного хозяйства, прибегающих к помощи тугоплавких металлоэлементов, можно выделить строительство машин, судов, космических аппаратов и их деталей, атомную энергетику, ядерную промышленность и химическую промышленность, электроснабжение и металлургию. При этом практически нигде тугоплавкие металлоэлементы не используются «в живую», обычно для этих целей берут их различные сплавы.

Тугоплавкие и легкоплавкие металлы

  1. Тугоплавкие – их температура плавления превышает точку плавления железа (1539 °C). К ним можно отнести платину, цирконий, вольфрам, тантал. Таких металлов всего несколько видов. На практике их применяется еще меньше.

    Некоторые не используются, так как они имеют высокую радиоактивность, другие – слишком хрупкие и не обладают нужной мягкостью, третьи – подвержены коррозии, а есть такие, что экономически невыгодные. Какой металл самый тугоплавкий? Как раз об этом пойдет речь в данной статье.

  2. Легкоплавкие – это металлы, которые при температуре меньше или равной температуре плавления олова 231,9 °C могут изменить свое агрегатное состояние. Например, натрий, марганец, олово, свинец. Металлы применяются в радио- и электротехнике.

    Их часто используют для антикоррозийных покрытий и в качестве проводников.

Вольфрам – самый тугоплавкий металл

Это твердый и тяжелый материал с металлическим блеском, светло-серого цвета, обладающий высокой тугоплавкостью. Механической обработке поддается трудно. При комнатной температуре он является хрупким металлом и легко ломается.

Вызвано это загрязнением его примесями кислорода и углерода. Технически чистый вольфрам при температуре более 400 градусов Цельсия становится пластичным. Проявляет химическую инертность, плохо вступает в реакции с другими элементами.

В природе вольфрам встречается в виде сложных минералов, таких как:

  • шеелит;
  • вольфрамит;
  • ферберит;
  • гюбнерит.

Вольфрам получают из руды, применяя сложные химические переработки, в виде порошка. Используя методы прессования и спекания, изготовляют детали простой формы и бруски. Вольфрам — очень стойкий элемент к температурным воздействиям. Поэтому размягчить металл не могли в течение ста лет.

Не имелось таких печей, которые могли бы разогреваться до нескольких тысяч градусов. Ученые доказали, что самым тугоплавким металлом является вольфрам.

Хотя существует мнение, что сиборгий, по теоретическим данным, обладает большей тугоплавкостью, но утверждать твердо этого нельзя, так как он радиоактивный элемент и имеет маленький срок существования.

Исторические сведения

Знаменитый шведский химик Карл Шееле, имеющий профессию аптекаря, в небольшой лаборатории, проводя многочисленные опыты, открыл марганец, барий, хлор и кислород.

А незадолго до смерти в 1781 году выявил, что минерал тунгстен является солью неизвестной тогда кислоты. После двух лет работы его ученики, два брата д’Элуяр (испанские химики), выделили из минерала новый химический элемент и назвали его вольфрамом.

Только через столетие вольфрам – самый тугоплавкий металл — произвел настоящий переворот в промышленности.

Режущие свойства вольфрама

В 1864 году английский ученый Роберт Мюшет использовал вольфрам как легирующую добавку к стали, которая выдерживала красное каление и еще больше увеличивала твердость. Резцы, которые изготовляли из полученной стали, увеличили скорость резания металла в 1,5 раза, и она стала составлять 7,5 метра в минуту.

Работая в этом направлении, ученые получали все новые технологии, увеличивая скорость обработки металла с использованием вольфрама.

В 1907 году появилось новое соединение вольфрама с кобальтом и хромом, которое стало основоположником твердых сплавов, способных увеличивать скорость резания.

В настоящее время она возросла до 2000 метров в минуту, и все это благодаря вольфраму – самому тугоплавкому металлу.

Применение вольфрама

Этот металл обладает сравнительно высокой ценой и тяжело обрабатывается механическим способом, поэтому применяют его там, где невозможно заменить другими, сходными по свойствам материалами.

Вольфрам прекрасно выдерживает высокие температуры, имеет значительную прочность, наделен твердостью, упругостью и тугоплавкостью, поэтому находит широкое использование во многих областях промышленности:

  • Металлургической. Она является основным потребителем вольфрама, который идет на производство высокого качества легированных сталей.
  • Электротехнической. Температура плавления самого тугоплавкого металла составляет почти 3400 °C. Тугоплавкость металла позволяет применять его для производства нитей накаливания, крючков в осветительных и электронных лампах, электродов, рентгеновских трубок, электрических контактов.
  • Машиностроительной. Благодаря повышенной прочности сталей, содержащих вольфрам, изготавливают цельнокованые роторы, зубчатые колеса, коленчатые валы, шатуны.
  • Авиационной. Какой самый тугоплавкий металл используют для получения твердых и жаропрочных сплавов, из которых делают детали авиационных двигателей, электровакуумных приборов, нити накаливания? Ответ прост – это вольфрам.
  • Космической. Из стали, содержащей вольфрам, производят реактивные сопла, отдельные элементы для реактивных двигателей.
  • Военной. Высокая плотность металла позволяет изготавливать бронебойные снаряды, пули, броневую защиту торпед, снарядов и танков, гранаты.
  • Химической. Стойкая вольфрамовая проволока против кислот и щелочей используется для сеток к фильтрам. С помощью вольфрама меняют скорость химических реакций.
  • Текстильной. Вольфрамовая кислота используется как краситель для тканей, а вольфрамит натрия применяют для производства кожи, шелка, водоустойчивых и огнестойких тканей.

Приведенный перечень использования вольфрама в разных областях индустрии указывает на высокую ценность этого металла.

Сделай сам
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: