Переходные металлы список

Содержание
  1. Таблица Менделеева для чайников – HIMI4KA
  2. Периодический закон
  3. Группы и периоды Периодической системы
  4. Свойства таблицы Менделеева
  5. Лантаниды (редкоземельные элементы) и актиниды
  6. Галогены и благородные газы
  7. Переходные металлы
  8. Металлоиды
  9. Постпереходными металлами
  10. Неметаллы
  11. Переходный металл: свойства и список
  12. Что это такое
  13. Место в периодической таблице
  14. Переходные металлы: список
  15. Особенности
  16. Химические свойства
  17. Проблемы систематизации
  18. Сравнительная характеристика
  19. Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов
  20. Медь, Cu
  21. Цинк, Zn
  22. Хром, Cr
  23. Железо, Fe
  24. Переходные металлы
  25.   Общая характеристика переходных элементов
  26.   Подгруппа меди
  27.   Медь
  28.   Оксид меди(II)
  29.   Гидроксид меди(II)
  30.   Соединения одновалентной меди
  31.   Серебро
  32.   Золото
  33.   Платиновые металлы
  34.   Литература
  35.   См. также
  36.   Ссылки
  37. Переходные металлы — характеристика, свойства и строение
  38. Значение переходных элементов
  39. Характеристики железа

Таблица Менделеева для чайников – HIMI4KA

Переходные металлы список

Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории.

Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная.

Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

Периодическая система химических элементов Д. И. Менделеева

На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом.

Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу.

Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме.

Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

The ID of 1M7iKKVnPJE is invalid.

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Группы и периоды Периодической системы

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп.

Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов.

Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

Свойства таблицы Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений.

В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы.

Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию.

 Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами.

По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

Показать / Скрыть текст

Щелочные металлыЩелочноземельные металлы
Литий Li 3Бериллий Be 4
Натрий Na 11Магний Mg 12
Калий K 19Кальций Ca 20
Рубидий Rb 37Стронций Sr 38
Цезий Cs 55Барий Ba 56
Франций Fr 87Радий Ra 88

Лантаниды (редкоземельные элементы) и актиниды

Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы.

Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов.

Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

Показать / Скрыть текст

ЛантанидыАктиниды
Лантан La 57Актиний Ac 89
Церий Ce 58Торий Th 90
Празеодимий Pr 59Протактиний Pa 91
Неодимий Nd 60Уран U 92
Прометий Pm 61Нептуний Np 93
Самарий Sm 62Плутоний Pu 94
Европий Eu 63Америций Am 95
Гадолиний Gd 64Кюрий Cm 96
Тербий Tb 65Берклий Bk 97
Диспрозий Dy 66Калифорний Cf 98
Гольмий Ho 67Эйнштейний Es 99
Эрбий Er 68Фермий Fm 100
Тулий Tm 69Менделевий Md 101
Иттербий Yb 70Нобелий No 102

Галогены и благородные газы

Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке.

В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е.

ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

Показать / Скрыть текст

ГалогеныБлагородные газы
Фтор F 9Гелий He 2
Хлор Cl 17Неон Ne 10
Бром Br 35Аргон Ar 18
Йод I 53Криптон Kr 36
Астат At 85Ксенон Xe 54
 —Радон Rn 86

Переходные металлы

Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

Показать / Скрыть текст

Переходные металлы
Скандий Sc 21
Титан Ti 22
Ванадий V 23
Хром Cr 24
Марганец Mn 25
Железо Fe 26
Кобальт Co 27
Никель Ni 28
Медь Cu 29
Цинк Zn 30
Иттрий Y 39
Цирконий Zr 40
Ниобий Nb 41
Молибден Mo 42
Технеций Tc 43
Рутений Ru 44
Родий Rh 45
Палладий Pd 46
Серебро Ag 47
Кадмий Cd 48
Лютеций Lu 71
Гафний Hf 72
Тантал Ta 73
Вольфрам W 74
Рений Re 75
Осмий Os 76
Иридий Ir 77
Платина Pt 78
Золото Au 79
Ртуть Hg 80
Лоуренсий Lr 103
Резерфордий Rf 104
Дубний Db 105
Сиборгий Sg 106
Борий Bh 107
Хассий Hs 108
Мейтнерий Mt 109
Дармштадтий Ds 110
Рентгений Rg 111
Коперниций Cn 112

Металлоиды

Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

Показать / Скрыть текст

Металлоиды
Бор B 5
Кремний Si 14
Германий Ge 32
Мышьяк As 33
Сурьма Sb 51
Теллур Te 52
Полоний Po 84

Постпереходными металлами

Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску.

В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке.

Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

Показать / Скрыть текст

Постпереходные металлы
Алюминий Al 13
Галлий Ga 31
Индий In 49
Олово Sn 50
Таллий Tl 81
Свинец Pb 82
Висмут Bi 83

Неметаллы

Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).

Показать / Скрыть текст

Неметаллы
Водород H 1
Углерод C 6
Азот N 7
Кислород O 8
Фосфор P 15
Сера S 16
Селен Se 34
Флеровий Fl 114
Унунсептий Uus 117

А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.

Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.

Переходный металл: свойства и список

Переходные металлы список

Элементы в периодической таблице часто делятся на четыре категории: элементы основной группы, переходные металлы, лантаноиды и актиноиды.

В основные элементы группы включают активные металлы в двух колонках по крайней левой части таблицы Менделеева и металлов, полуметаллов и неметаллов в шести колонках на крайней правой.

Эти переходные металлы являются металлическими элементами, которые выступают в качестве своего рода моста или перехода между частями сторонами периодической таблицы.

Что это такое

Эвентуальный — это какой?

Из всех групп химических элементов переходные металлы могут быть наиболее сложными для идентификации, потому что существуют различные мнения относительно того, что именно туда должно быть включено.

Согласно одному из определений, к ним относят любые вещества с частично заполненной d-электронной подоболочкой (обиталью).

Это описание относится к группам с 3-й по 12-ю в периодической таблице, хотя элементы f-блока (лантаноиды и актиноиды, расположенные ниже основной части периодической таблицы) также являются переходными металлами.

Их название связано с именем английского химика Чарльза Бери, который использовал его в 1921 году.

Место в периодической таблице

Переходными являются все металлы рядов, расположенных в группах от IB до VIIIB периодической таблицы:

  • с 21-го (скандий) по 29-й (медь);
  • с 39-го (иттрий) по 47-й (серебро);
  • с 57-го (лантан) до 79-го (золото);
  • с 89-го (актиний) до 112-й (коперник).

Последняя группа включает лантаноиды и актиноиды(так называемые f-элементы, которые представляют собой их особую группу, все остальные относятся к d-элементам).

Переходные металлы: список

Перечень этих элементов представлен:

  • скандием;
  • титаном;
  • ванадием;
  • хромом;
  • марганцем;
  • железом;
  • кобальтом;
  • никелем;
  • медью;
  • цинком;
  • иттрием;
  • цирконием;
  • ниобием;
  • молибденом;
  • технецием;
  • рутением;
  • родием;
  • палладием;
  • серебром;
  • кадмием;
  • гафнием;
  • танталом;
  • вольфрамом;
  • рением;
  • осмием;
  • иридием;
  • платиной;
  • золотом;
  • ртутью;
  • резерфодием;
  • дубнием;
  • сиборгием;
  • борием;
  • хассием;
  • мейтнерием;
  • дармштадтием;
  • рентгением;
  • унунбием.

Группа лантаноидов представлена:

  • лантаном;
  • церием;
  • празеодимом;
  • неодимом;
  • прометием;
  • самарием;
  • европием;
  • гадолинием;
  • тербием;
  • диспрозием;
  • гольмием;
  • эрбием;
  • тулием;
  • иттербием;
  • лютецием.

Актиноиды представлены:

  • актинием;
  • торием;
  • протактинием;
  • ураном;
  • нептунием;
  • плутонием;
  • америцием;
  • кюрием;
  • берклием;
  • калифорнием;
  • эйнштейнием;
  • фермием;
  • менделевием;
  • нобелием;
  • лоуренсием.

Особенности

В процессе образования соединений атомы металлов могут использоваться как валентные s- и p-электроны, так и d-электроны. Поэтому d-элементы в большинстве случаев характеризуются переменной валентностью, в отличие от элементов главных подгрупп. Это свойство обуславливает их способность к образованию комплексных соединений.

Наличие определенных свойств обуславливает название этих элементов. Все переходные металлы ряда являются твердыми с высокими температурами плавления и кипения.

При перемещении слева направо по периодической таблице пять d-орбиталей становятся более заполненными. Их электроны слабо связаны, что способствует высокой электропроводности и податливости переходных элементов.

Им свойственна также низкая энергия ионизации (она требуется при удалении электрона от свободного атома).

Химические свойства

Переходные металлы проявляют широкий спектр состояний окисления или положительно заряженных форм. В свою очередь, они позволяют переходным элементам образовывать много различных ионных и частично ионных соединений.

Образование комплексов приводит к расщеплению d-орбиталей на два энергетических подуровня, что позволяет многим из них поглощать определенные частоты света. Таким образом, образуются характерные окрашенные растворы и соединения.

Эти реакции иногда усиливают относительно низкую растворимость некоторых соединений.

Переходные металлы характеризуются высокой электропроводностью и теплопроводностью. Они податливы. Обычно образуют парамагнитные соединения из-за неспаренных d-электронов. Также им свойственна высокая каталитическая активность.

Следует также отметить, что существует некоторая полемика о классификации элементов на границе между основной группой и элементами переходного металла в правой части таблицы. Этими элементами являются цинк (Zn), кадмий (Cd) и ртуть (Hg).

Проблемы систематизации

Разногласия относительно того, следует ли классифицировать их как относящиеся к основной группе или переходные металлы, свидетельствуют о том, что различия между этими категориями не ясны.

Между ними есть определенное сходство: они выглядят как металлы, они податливы и пластичны, они проводят тепло и электричество и образуют положительные ионы.

Тот факт, что двумя лучшими проводниками электричества являются переходный металл (медь) и элемент, относящийся к основной группе (алюминий), показывает степень, в которой физические свойства элементов двух этих групп перекрываются.

Сравнительная характеристика

Существуют также различия между основными и переходными металлами. Например, последние являются более электроотрицательными, чем представители основной группы. Поэтому они с большей вероятностью образуют ковалентные соединения.

Другое различие между металлами основной группы и переходными металлами можно увидеть в формулах соединений, которые они образуют.

Первые имеют тенденцию образовывать соли (такие как NaCl, Mg 3 N 2 и CaS), в которых достаточно только отрицательных ионов, чтобы уравновесить заряд на положительных ионах. Переходные металлы образуют аналогичные соединения, такие как FeCl3, HgI2 или Cd (OH)2.

Однако они чаще, чем металлы основной группы, образуют комплексы, такие как FeCl4- , HgI42- и Cd (ОН)42-, имеющие избыточное количество отрицательных ионов.

Еще одно отличие между основной группой и ионами переходных металлов заключается в легкости, с которой они образуют стабильные соединения с нейтральными молекулами, такими как вода или аммиак.

Источник

Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов

Переходные металлы список

Переходные элементы имеют d- и f-электроны, у них происходит заполнение внутренних оболочек. В Периодической системе химических элементов (ПСХЭ) они заполняют В-группы (побочные) 4, 5 и 6 периодов (рис. 1). В основном расположены между s- и р-элементами. 

Рис. 1. Периодическая таблица

Наибольшее практическое значение среди переходных элементов имеют медь, цинк, хром и железо. На примере элементов, простых веществ и соединений можно проследить общие закономерности изменения свойств.

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s2 2s22p6 3s23p63d10 4s1. В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

Промышленное получение:

  • Восстановление водородом. Схема процесса: Cu+2O + H2 → Cu0 + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 → CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu2+ + 2ē → Cu0; на аноде — окисление 2H2O – 4ē → 4H+ + O2↑. 

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Рис. 2. Медь

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Таблица 1

Важнейшие соединения меди

Класс веществНазвание соединенияХарактер свойств
ОксидыОксид меди (I) Cu2OОсновной.
Оксид меди (II) CuOАмфотерный (преобладают основные свойства).
ГидроксидыГидроксид меди (I) СuOHОсновной.
Гидроксид меди (II) Cu(ОН)2Амфотерный (преобладают основные свойства).

Применение меди, ее соединений и сплавов:

  • изготовление конденсаторов, механизмов для часов, ювелирных изделий с применением латуни (сплава);
  • использование чистого металла и сплавов в машиностроении;
  • использование оксидов в производстве стекла, эмалей;
  • производство дистилляторов воды;
  • выпуск проволоки, кабеля.

Кристаллогидрат сульфата меди (медный купорос) — средство для борьбы с грибковыми инфекциями растений. Применяется в смеси с гашеной известью для получения более сильной бордоской жидкости. Медь используется в производстве микроудобрений. Элемент необходим растениям и животным для нормального роста и развития.

Цинк, Zn

Латинское название Zincum, химический символ Zn. Элемент 4 периода, расположен во II группе, В-подгруппе. Порядковый номер 30. Масса — 65,37. Строение электронных оболочек: 1s2 2s22p6 3s23p63d10 4s2 (в основном состоянии). Валентность и степень окисления: II(+) и +2 (соответственно).

Способы получения в промышленности:

  • Восстановление углеродом при нагревании: ZnO+ C → CO↑ + Zn.
  • Гидрометаллургия: ZnO + H2SO4 → ZnSO4+ H2O; ZnSO4+ Fe → FeSO4+ Zn↓.
  • Электролиз: цинк восстанавливается на катоде Zn2+ + 2H+ + 4ē → Zn↓ + H2.

Цинк — металл серебристо-серого цвета (рис. 3). Твердый, проводит тепло и электричество. Окисляется кислородом при нагревании. Не взаимодействует с бором, углеродом, кремнием, азотом.

В воде не растворяется, но при сильном нагревании реагирует с водяным паром с образованием оксида цинка и выделением водорода. Реагирует с кислотами, кроме азотной, вытесняет водород.

Вытесняет металлы, расположенные в ряду активности правее, из растворов их солей. 

Рис. 3. Цинк

Таблица 2

Характеристика соединений

Классы веществНазвания и формулыСвойства
ОксидыОксид цинка, ZnOАмфотерный.
ГидроксидыГидроксид цинка Zn(ОН)2Амфотерный.

Цинк находит применение как защитный материал для предотвращения ржавчины (оцинковки) изделий из стали, железа. Металл используется в строительстве, производстве бытовой техники и для других целей.

Хром, Cr

Латинское название Chromium, химический символ Cr. Элемент 4 периода, VI В-группы. Порядковый номер 24. Относительная атомная масса — 52. Строение электронных оболочек характеризует формула 1s2 2s22p6 3s23p63d5 4s1 (в невозбужденном состоянии).

Значения валентности и степени окисления в соединениях: II(+), III(+) VI(+); +2, +3, +6 (соответственно). Наиболее устойчивое состояние достигается при степени окисления +3. Повышение значения ведет к появлению и возрастанию кислотных свойств, ослаблению основных.

https://www.youtube.com/watch?v=McEmVMSY44Yu0026list=PLsOMq-874J1VsdWTTM534gS0xyBGSsgka

Способы получения в промышленности — пирометаллургия и электролиз. В первом случае используется вытеснение алюминием из оксида. Схема процесса: Cr2O3 + 2Al → Al2O3 + 2Cr. Проводят электролиз концентрированных водных растворов оксидов (CrO3 или Cr2O3), либо соли Cr2(SO4)3. Второй метод служит для получения наиболее чистого вещества.

Хром — твердый металл серого цвета с металлическим блеском (рис. 4). Вытесняет водород при взаимодействии с растворами неокисляющих кислот (соляной, фосфорной и др.). При сильном нагревании растворяется в серной и азотной кислотах.

Рис. 4. Хром

Таблица 3 

Химические свойства соединений

Классы веществНазвания и формулыСвойства
ОксидыОксид хрома (II), СгО.Основной.
Оксид хрома (III), Сг2О3.Амфотерный.
Оксид хрома (VI), СгО3.Кислотный. Образует две кислоты — хромовую и дихромовую.
ГидроксидыГидроксид хрома (II), Сг(ОН)2.Основной.
Гидроксид хрома (III), Сг(ОН)3.Амфотерный

Металл применяется для хромирования стали, изготовления декоративных изделий, бижутерии. Растворами солей пропитывают древесину для защиты от вредителей. Хром применяется для изготовления красителей, окраски стекла.

Железо, Fe

Латинское название Ferrum, химический символ Fe. Элемент находится в 4 периоде, VIII В-группе ПСХЭ. Порядковый номер 26. Относительная атомная масса — 56. Строение электронных оболочек характеризует формула 1s2 2s22p6 3s23p63d6 4s2 (в невозбужденном состоянии).

Значения валентности и степени окисления в соединениях: II(+), III(+) VI(+); +2, +3, +6 (соответственно). Самое устойчивое состояние — при степени окисления +3. Железо в степени окисления +6 — сильный окислитель.

Железо получают в промышленности двумя основными способами. Пирометаллургический заключается в восстановлении алюминием или водородом при высоких температурах. Схема алюмотермии: Fe3O4 + 4H2 → 3Fe + 4H2O.

Подвергают растворы солей, например хлорид. На катоде происходит восстановление по схеме: Fe+3+ 3ē → Fe↓. На аноде собирают газообразный хлор.

Сплавы железа — чугун и сталь — производят в мартеновских печах, получают электрометаллургическим способом.

Железо — твердый металл серебристо-черного цвета с металлическим блеском (рис. 5). Взаимодействует с кислородом при сильном нагревании. Вытесняет водород из растворов кислот. В воде окисляется с образованием оксидов и гидроксидов. Эту смесь в быту называют ржавчиной (рис. 6).

Рис. 5. Железо

Таблица 4

Свойства соединений

Классы веществНазвания и формулыСвойства
ОксидыОксид железа (II) FeO.Основной.
Оксид железа (III) Fe2O3.Амфотерный, с преобладанием основных свойств.
ГидроксидыГидроксид железа (II) Fe(ОН)2.Основной.
Гидроксид железа (III) Fe(ОН)3.Амфотерный, с преобладанием основных свойств.

Рис. 6. Ржавчина на железном изделии

Сплавы железа применяется во многих отраслях промышленности, строительстве, в транспортной отрасли. Сам металл менее прочный, ржавеет. Раствор сульфата железа используют в сельском хозяйстве для борьбы с болезнями и для подкормок растений.

Смотри также:

Переходные металлы

Переходные металлы список

Перехо́дные мета́ллы(перехо́дные элеме́нты) — элементы побочных подгрупп Периодической системы химических элементов Д. И. Менделеева, в атомах которых появляются электроны на d- и f-орбиталях.

[1] В общем виде электронное строение переходных элементов можно представить следующим образом: . На ns-орбитали содержится один или два электрона, остальные валентные электроны находятся на -орбитали.

Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.

  Общая характеристика переходных элементов

Все переходные элементы имеют следующие общие свойства: [2]

  • Для всех переходных элементов характерно образование комплексных соединений.

  Подгруппа меди

Подгруппа меди, или побочная подгруппа I группы Периодической системы химических элементов Д. И. Менделеева, включает в себя элементы: медь Cu, серебро Ag и золото Au.

Свойства металлов подгруппы меди [3]

АтомныйномерНазвание,символЭлектроннаяконфигурацияСтепениокисленияp,г/см³tпл,°Ctкип,°C
29Медь Cu[Ar] 3d104s10, +1, +28,96 [4][5]1083 [4][5]2543 [4][5]
47Серебро Ag[Kr] 4d105s10, +1, +310,5 [6]960,8 [6]2167 [6]
79Золото Au[Xe] 4f145d106s10, +1, +319,3 [7]1063,4 [7]2880 [7]

Для всех металлов характерны высокие значения плотности, температур плавления и кипения, высокая тепло- и электропроводность. [8]

Особенностью элементов подгруппы меди является наличие заполненного предвнешнего -подуровня, достигаемое за счёт перескока электрона с ns-подуровня.

Причина такого явления заключается в высокой устойчивости полностью заполненного d-подуровня.

Эта особенность обусловливает химическую инертность простых веществ, их химическую неактивность, поэтому золото и серебро называют благородными металлами.[9]

  Медь

Основная статья: Медь

 Металлическая медь в стеклянной пробирке

Медь представляет собой довольно мягкий металл красно-жёлтого цвета [10]. В электрохимическом ряду напряжений металлов она стоит правее водорода, поэтому растворяется только в кислотах-окислителях (в азотной кислоте любой концентрации и в концентрированной серной кислоте):

В отличие от серебра и золота, медь окисляется с поверхности кислородом воздуха уже при комнатной температуре. В присутствии углекислого газа и паров воды её поверхность покрывается зелёным налётом, представляющим собой основной карбонат меди(II).

Для меди наиболее характерна степень окисления +2 [11], однако существует целый ряд соединений, в которых она проявляет степень окисления +1.

  Оксид меди(II)

Основная статья: Оксид меди(II)

 Оксид меди(II) в порошкообразной форме

Оксид меди(II) CuO — вещество чёрного цвета. Под действием восстановителей при нагревании он превращается в металлическую медь:

Растворы всех солей двухвалентной меди окрашены в голубой цвет, который им придают гидратированные ионы .

https://www.youtube.com/watch?v=mQ4lyy0QhCMu0026list=PLsOMq-874J1VsdWTTM534gS0xyBGSsgka

При действии на растворимые соли меди раствором питьевой соды образуется малорастворимый основной карбонат меди (II) — малахит:

  Гидроксид меди(II)

Основная статья: Гидроксид меди(II)

 Свежеосаждённый гидроксид меди(II)

Гидроксид меди(II) Cu(OH)2 образуется при действии щелочей на растворимые соли меди(II) [12]:

Это малорастворимое в воде вещество голубого цвета. Гидроксид меди(II) — амфотерный гидроксид с преобладанием основных свойств. При сильном нагревании или стоянии под маточным раствором он разлагается:

При добавлении аммиака Cu(OH)2 растворяется с образованием ярко-синего комплекса:

  Соединения одновалентной меди

Соединения одновалентной меди крайне неустойчивы, поскольку медь стремится перейти либо в Cu2+, либо в Cu0. Стабильными являются нерастворимые соединения CuCl, CuCN, Cu2S и комплексы типа . [13]

  Серебро

Основная статья: Серебро

 Металлическое серебро в стеклянной пробирке

Серебро более инертно, чем медь[14] , но при хранении на воздухе оно чернеет из-за образования сульфида серебра:

Серебро растворяется в кислотах-окислителях:

Наиболее устойчивая степень окисления серебра +1. В аналитической химии широкое применение находит растворимый нитрат серебра AgNO3, который используют как реактив для качественного определения ионов Cl−, Br−, I−:

При добавлении к раствору AgNO3 раствора щёлочи образуется тёмно-коричневый осадок оксида серебра Ag2O:

Многие малорастворимые соединения серебра растворяются в веществах-комплексообразователях, например, аммиаке и тиосульфате натрия:

  Золото

Основная статья: Золото

Золото представляет собой металл, сочетающий высокую химическую инертность и красивый внешний вид, что делает его незаменимым в производстве ювелирных украшений. [15] В отличие от меди и серебра, золото крайне инертно по отношению к кислороду и сере, но реагирует с галогенами при нагревании:

Чтобы перевести золото в раствор, необходим сильный окислитель, поэтому золото растворимо в смеси концентрированных соляной и азотной кислот («царской водке»):

  Платиновые металлы

Основная статья: Металлы платиновой группы

Платиновые металлы — семейство из 6 химических элементов побочной подгруппы VIII группы Периодической системы, включающее рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir и платину Pt. Эти металлы подразделяются на две триады: лёгкие — триада палладия (Ru, Rh, Pd) и тяжёлые — триада платины (Os, Ir, Pt).

  Литература

  • Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
  • Ерёмина Е. А., Рыжова О. Н. Глава 17. Переходные элементы // Справочник школьника по химии. — М.: Экзамен, 2009. — С. 250-275. — 512 с. — 5000 экз. — ISBN 978-5-377-01472-0
  • Кузьменко Н. Е. , Ерёмин В. В., Попков В. А. Начала химии. Современный курс для поступающих в вузы. — М.: Экзамен, 1997-2001.
  • Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. — М.: Химия, 1987.
  • Некрасов Б. В. Основы общей химии. — М.: Химия, 1974.
  • Рабинович В. А., Хавин З. Я. Краткий химический справочник. — Л., 1977. — С. 98.
  • Спицын В. И., Мартыненко Л. И. Неорганическая химия. — М.: МГУ, 1991, 1994.
  • Турова Н. Я. Неорганическая химия в таблицах. Учебное пособие. — М.: Высший химический колледж РАН, 1997.

  См. также

  • Благородные металлы
  • Металлы
  • Щелочные металлы
  • Щёлочноземельные металлы

  Ссылки

  

Переходные металлы — характеристика, свойства и строение

Переходные металлы список

Переходные металлы образуют соединения, в которых проявляют положительные степени окисления. Наиболее заметно различие свойств в IV-VIII подгруппах, где побочные составляют металлы, а главные — неметаллы.

Находящиеся в самой таблице символы обозначаются — d, а буквой f — лантаноиды и актиноиды. Самые выраженные из этой категории: Cr, Mn, Fe, Cu, Zn, и Ag. История открытия указывает на то, что все они в свободном состоянии являются металлами.

Внешний номер электронной оболочки совпадает с номером периода.

К самым известным на Земле d-металлам относится железо, следующее сразу после алюминия. Большая часть представлена оксидами или сульфидами. В свободном виде встречается лишь медь. Соединения d-металлов также обнаружены на Луне.

Из всех групп химических элементов переходные достаточно трудно идентифицировать из-за разногласий по поводу того, что именно должно быть в них включено. По одной версии переходными считаются вещества с не полностью заполненной d-электронной подоболочкой.

Значение переходных элементов

В жизнедеятельности человека они выполняют важную функцию. Без них организм не может существовать:

  • Железо — главный источник гемоглобина.
  • Цинк — вырабатывает инсулин.
  • Кобальт — основной компонент витамина В12.
  • Медь, марганец и молибден — входят в состав ферментов.

Яркие представители — чугун и сталь, используемые в тяжелой промышленности.

В черной металлургии их получают из железной руды. Вначале выплавляется чугун, а затем из него — сталь. Углерода в чугуне больше 1,7%, а в стали — меньше этого значения.

Благодаря добавкам — хрому, марганцу и никелю — стали обретают другие качества. Так, хром повышает прочность и устойчивость к действию кислот. Наиболее употребительные сплавы на основе меди: бронза, латунь и мельхиор. Особенно широкое применение нашли: сталь, чугун и бронза. Велика значимость железа, неслучайно по его содержанию сплавы подразделяются на черные и цветные.

Характеристики железа

Этот элемент представляет наибольший интерес, поскольку составляет важные соединения, среди которых железная кислота и соли. Чаще всего не используется как чистое вещество, а в виде сплавов с углеродом и другими элементами. Взаимодействует с:

  • Неметаллами — при нагревании, преимущественно в виде порошка.
  • Кислородом — образование оксидов.
  • Водой — при большой температуре. При повышенной влажности вступает в реакцию с водяными парами и кислородом, что служит возникновению ржавчины.
  • Кислотами — с выделением водорода.
  • Растворами солей — вытесняет менее активные металлы.

Переходные металлы играют огромную роль в жизни людей.

По этой причине их изучение включено в обязательный курс школьной программы. Наиболее подробно о свойствах рассказывается на уроках химии в старших классах при проведении лабораторных работ.

Сделай сам
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: