Лазерный гравер по металлу своими руками

Содержание
  1. Как сделать лазерный по металлу и дереву гравер своими руками
  2. Как сделать лазерный гравер своими руками: пошаговая инструкция
  3. Как собрать самодельный лазерный гравер по дереву?
  4. Сборка внутренней части
  5. Сборка внешней части
  6. Что требуется учесть, при создании самодельного гравера?
  7. Преимущества и недостатки лазерного самодельного гравера
  8. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками. Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов. Самодельный лазерный станок в процессе гравировки по дереву Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике. Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт. Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку. Этот гравер справится и с тонким пластиком Необходимые материалы Лазерный резак/гравер своими руками — МозгоЧины Лазерный резак/гравер своими руками — МозгоЧины Лазерный резак/гравер своими руками — МозгоЧины   Доброго дня,мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino. Этамозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого. Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт. То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует. Шаг 1: Материалы Как сделать лазерный по металлу и дереву гравер своими руками Такое хобби, как гравировка по разным материалам, увлекает многих людей разного возраста. В наше время такую операцию облегчает лазерный луч. Заводские установки для такой гравировки стоят недешево, и далеко не все могут себе их позволить. О том, как сделать лазерный гравер своими руками, стоит поговорить подробнее. Лазерная гравировка представляет собой процесс формирования рельефного изображения на изделии с помощью сфокусированного лазерного луча. Она позволяет делать надписи, наносить маркировку, создавать художественные произведения, сувениры и украшения. Для этого используется специальный станок – гравер, в котором устанавливается источник лазерного излучения, а излучаемая энергия передается через оптическую систему на фокусирующий элемент. В результате на изделие подается тонкий луч с концентрированной энергией. Ее достаточно для того, чтобы выжечь поверхностный слой материала в месте воздействия луча. Образуются углубления, из которых можно собрать нужный рисунок.  Важно!  В зависимости от мощности луча и времени воздействия обеспечивается разная глубина и диаметр углубления. Чем меньше расстояние от линзы до поверхности, тем точнее фокусировка. Как сделать лазерный гравер своими руками: пошаговая инструкция Лазерный гравер можно сделать своими руками. В качестве основного элемента используется полупроводниковый лазер (светодиод) мощностью до 10 Вт. Фокусирование светового потока обеспечивается оптической системой, собираемой из нескольких линз. Для возможности управления процессом формируется трансмиссионная и контролирующая системы. Трансмиссия составляется из сервоприводов, синхронизирующих источник излучения с программным обеспечением. Контроль обеспечивают датчики и специальные схемы. При длительной работе гравера необходимо эффективное охлаждение диода с помощью кулеров. Опорные элементы и вспомогательные механизмы составляют механическую часть станка, которая отвечает за надежность работы всего устройства. Как собрать самодельный лазерный гравер по дереву? Для создания рельефного рисунка на дереве не нужна большая энергия. Готовый источник излучения и оптику можно взять из DVD-RW привода. Простой самодельный гравер показан на фото 1. Потребуются такие детали: П-образная или круглая трубка из цветного металла с внутренним диаметром 18–20 мм; электролитический конденсатор 2200 мкФ на 20 В; пленочный конденсатор 100 нФ; резистор 5 Ом; контактная кнопка и выключатель; аккумулятор типа 18650 и холдер; контроллер заряда; гнездо Jack 2,1 ×5,5 мм; коробка для обувной губки; теплопроводящий клей. Надо заранее приготовить и инструмент: электродрель, паяльник, кусачки, плоскогубцы, отвертка. При изготовлении корпуса потребуются: пистолет для термоклея, ножовка по металлу и дереву, напильники. Сборка внутренней части Внутренняя рабочая часть – это, по сути, сам лазер, включающий излучатель и фокусирующую систему. Рекомендуется такой порядок сборки лазера. Извлекается светодиод и линзы из DVD-привода. Для гравера подходят только элементы, содержащиеся в пишущей головке. Тестируется диод. На вывод надо подать напряжение 3 В и убедиться, что происходит свечение. Отпиливается отрезок трубки длиной 150 мм и просверливается в ней отверстие под контактную кнопку. В коробке для губки вырезаются гнезда для трубки, аккумулятора и выключателя. Собирается электрическая схема. К контроллеру заряда прикрепляется аккумулятор, при этом контакты «+» и «- » соединены с гнездом, а 2 других контакта – уходят на светодиод. На плату собирается схема питания лазера и изолируется скотчем. К схеме подсоединяется светодиод и кнопка. В трубке устанавливается лазер и закрепляется клеем, а в подготовленное отверстие вставляется кнопка. Остальные элементы схемы закрепляются скотчем. Трубка с лазером закрепляется в коробке. Клеем закрепляется в ней аккумулятор и контроллер. Электрическая схема выводится наружу. Фокусирующая линза устанавливается в трубке перед лазером. Для определения оптимального места надо проверить действие на листе бумаги. Перемещая линзу, определяется максимальный прожиг листа. В этой точке линза закрепляется термоклеем. Коробка закрывается крышкой и можно считать, что лазер готов. Сборка внешней части Внешняя часть гравера отвечает за управление станком. Она состоит из механической системы перемещения, корпуса и системы управления (электроники). Собирается внешняя часть в таком порядке. Подготавливаются направляющие нужной длины: 2 – укороченные и 2 – длинные. В каждой группе длина направляющих одинакова. Вырезается основание, оно должно быть на 10–15 см больше длины направляющих. Подготавливаются Т-образные опоры для крепления направляющих к основанию. Они с помощью болтов вертикально закрепляются на основании. Устанавливаются направляющие оси Y, а на их свободные концы одеваются каретки оси Х. Вставляются все направляющие на свои опоры. Сверлятся отверстия для электродвигателей и осей шестеренок. Устанавливаются шаговые двигатели, а на их валы закрепляются шестеренки. В отверстия вставляются стержни оси и закрепляются эпоксидным клеем. Устанавливаются прижимные ролики. Устанавливаются и натягиваются ремни зубчатого типа для передачи вращения. На каретки устанавливаются лазеры. Все провода аккуратно размещаются в специальных каналах. Концы выводятся наружу. Завершает монтаж изготовление корпуса и подключение системы управления: В основании делаются отверстия и устанавливаются уголки. Высота должна позволять поместить все элементы станка. Из фанеры или оргстекла вырезаются стенки и закрепляются на уголках. Крышка присоединяется с помощью петель. В передней стенке делается отверстие для проводов. Закрепляется выключатель и USB гнезда. Монтируется и настраивается преобразователь напряжения. К станку подключается компьютер и устанавливается программное обеспечение. Изображение в понятный для Arduino формат позволяет перевести программа Inkscape Lasertngraver. Порядок сборки самодельного гравера для металла мало отличается от методики монтажа станка для обработки дерева. Главное отличие заключается в необходимости использования более мощного источника, что накладывает свои особенности. Что требуется учесть, при создании самодельного гравера? При изготовлении и эксплуатации любого лазерного оборудования важно учитывать, что излучение опасно для человека. При настройке и тестировании лазеров появляется риск ожогов, нарушения зрения. Это указывает на необходимость соблюдения мер безопасности. Прежде всего, необходимы затемненные очки, защищающие глаза. В целом сборка своими руками гравера мало отличается от монтажа иных систем с элементами оптики и электроники. Преимущества и недостатки лазерного самодельного гравера Выделяются такие преимущества лазерных граверов: облегчение и ускорение процесса гравировки; возможность обработки труднодоступных мест, куда обычный инструмент просто не может войти; можно производить гравировку на очень тонких покрытиях; возможность использования ЧПУ и проведения процесса по заданной программе; самостоятельное изготовление экономит средства, необходимые на закупку заводских моделей. Следует отметить и некоторые минусы: сложность в контроле глубины выжигания (только косвенный контроль по мощности); изменение параметров гравировки при неоднородности структуры материала по поверхности; риск деформации некоторых материалов при температурном воздействии. Эффективность гравера и качество гравировки зависит от используемого источника излучения, оптики и мастерства исполнителя. Лазерный гравер становится все более популярным среди домашних мастеров. Такие аппараты позволяют создавать уникальные художественные произведения. Собрать гравер можно своими руками, причем источник лазерного излучения можно найти в старых DVD-приводах, принтерах, лазерных указках, светодиодных фонарях. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками. Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов. Самодельный лазерный станок в процессе гравировки по дереву Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике. Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт. Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку. Этот гравер справится и с тонким пластиком Необходимые материалы Необходимые материалы Для того чтобы самостоятельно изготовить лазерный гравер на Arduino, потребуются следующие расходные материалы, механизмы и инструменты: аппаратная платформа Arduino R3; плата Proto Board, оснащенная дисплеем; шаговые двигатели, в качестве которых можно использовать электромоторы из принтера или из DVD-плеера; лазер, мощность которого составляет 3 Вт; устройство для охлаждения лазера; регулятор напряжения постоянного тока DC-DC; транзистор MOSFET; электронные платы, при помощи которых осуществляется управление двигателями лазерного гравера; выключатели концевого типа; корпус, в котором можно разместить все элементы конструкции самодельного гравера; зубчатые ремни и шкивы для их установки; шарикоподшипники различных типоразмеров; четыре деревянных доски (две из них с размерами 135х10х2 см, а две другие – 125х10х2 см); четыре металлических стержня круглого сечения, диаметр которых составляет 10 мм; болты, гайки и винты; смазочный материал; стяжки-хомуты; компьютер; сверла различного диаметра; циркулярная пила; наждачная бумага; тиски; стандартный набор слесарных инструментов. Наибольшего вложения потребует электронная часть станка Электрическая часть самодельного лазерного гравера Электрическая часть самодельного лазерного гравера Основным элементом электрической схемы представленного устройства является лазерный излучатель, на вход которого должно подаваться постоянное напряжение со значением, не превышающим допустимых параметров. Если не соблюсти данное требование, лазер может просто сгореть. Лазерный излучатель, используемый в гравировальной установке представленной конструкции, рассчитан на напряжение 5 В и силу тока, не превышающую 2,4 А, поэтому настройка регулятора DC-DC должна быть выполнена на силу тока 2 А и напряжение до 5 В. Электрическая схема гравера Транзистор MOSFET, который является важнейшим элементом электрической части лазерного гравера, необходим для того, чтобы, получая сигнал от контроллера «Ардуино», включать и выключать лазерный излучатель. Электрический сигнал, вырабатываемый контроллером, является очень слабым, поэтому воспринимать его, а затем отпирать и запирать контур питания лазера может только транзистор MOSFET. В электрической схеме лазерного гравера такой транзистор устанавливается между плюсовым контактом лазера и минусовым регулятора постоянного тока. Шаговые электродвигатели лазерного гравера подключаются через одну электронную плату управления, что обеспечивает синхронность их работы. Благодаря такому подключению зубчатые ремни, приводимые в движение несколькими двигателями, не провисают и сохраняют стабильное натяжение в процессе своей работы, что обеспечивает качество и точность выполняемой обработки. Следует иметь в виду, что лазерный диод, используемый в самодельной гравировальной установке, не должен перегреваться. Для этого необходимо обеспечить его эффективное охлаждение. Решается такая задача достаточно просто: рядом с диодом устанавливают обычный компьютерный вентилятор. Чтобы исключить перегрев плат управления работой шаговых электродвигателей, рядом с ними также размещают компьютерные кулеры, так как обычные радиаторы с такой задачей не справляются. Фотографии процесса сборки электросхемы Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 Процесс сборки Процесс сборки Самодельный гравировальный станок предложенной конструкции – это устройство челночного типа, один из подвижных элементов которого отвечает за перемещение по оси Y, а два других, спаренных, – за перемещение по оси X. За ось Z, которая также оговаривается в параметрах такого 3D-принтера, принимается глубина, на которую осуществляется прожиг обрабатываемого материала. Глубина отверстий, в которые устанавливаются элементы челночного механизма лазерного гравера, должна составлять не менее 12 мм. Рамка рабочего стола – размеры и допуски Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 В качестве направляющих элементов, по которым будет перемещаться рабочая головка лазерного гравировального устройства, могут выступать алюминиевые стержни диаметром не менее 10 мм. Если найти стержни из алюминия не представляется возможным, для этих целей можно использовать стальные направляющие такого же диаметра. Необходимость применения стержней именно такого диаметра объясняется тем, что в таком случае рабочая головка лазерного гравировального устройства не будет провисать. Изготовление подвижной каретки Поверхность стержней, которые будут использоваться в качестве направляющих элементов для лазерного гравировального устройства, надо очистить от заводской смазки и тщательно отшлифовать до идеальной гладкости. Затем на них следует нанести смазывающий состав на основе белого лития, который улучшит процесс скольжения. Установка шаговых двигателей на корпус самодельного гравировального устройства осуществляется при помощи кронштейнов, изготовленных из листового металла. Чтобы сделать такой кронштейн, лист металла, ширина которого приблизительно соответствует ширине самого двигателя, а длина в два раза превышает длину его основания, сгибают под прямым углом. На поверхности такого кронштейна, где будет располагаться основание электромотора, сверлят 6 отверстий, 4 из которых необходимы для фиксации самого двигателя, а два остальных – для крепления кронштейна к корпусу при помощи обычных саморезов. Для установки на вал электромотора приводного механизма, состоящего из двух шкивов, шайбы и болта, также используется кусок металлического листа соответствующего размера. Чтобы смонтировать такой узел, из металлического листа формируют П-образный профиль, в котором просверливаются отверстия для его крепления к корпусу гравера и для выхода вала электродвигателя. Шкивы, на которые будут надеваться зубчатые ремни, насаживаются на вал приводного электромотора и размещаются во внутренней части П-образного профиля. Надетые на шкивы зубчатые ремни, которые должны приводить в движение челноки гравировального устройства, соединяются с их деревянными основаниями при помощи саморезов. Установка шаговых двигателей Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 Установка программного обеспечения Установка программного обеспечения Вашему лазерному гроверу, который должен работать в автоматическом режиме, потребуется не только установка, но и настройка специального программного обеспечения. Важнейшим элементом такого обеспечения является программа, которая позволяет создавать контуры желаемого рисунка и преобразовывать их под расширение, понятное управляющим элементам лазерного гравера. Такая программа имеется в свободном доступе, и ее можно без особых проблем скачать на свой компьютер. Программа, скачанная на управляющий гравировальным устройством компьютер, распаковывается из архива и устанавливается. Кроме того, вам потребуется библиотека контуров, а также программа, которая будет отправлять данные по создаваемому рисунку или надписи на контроллер «Ардуино». Такую библиотеку (как и программу для передачи данных на контроллер) также можно найти в свободном доступе. Для того чтобы ваша лазерная самоделка работала корректно, а гравировка, выполняемая с ее помощью, была качественной, вам потребуется настройка и самого контроллера под параметры гравировального устройства. Особенности использования контуров Особенности использования контуров Если с вопросом о том, как сделать ручной лазерный гравер, вы уже разобрались, то необходимо прояснить и вопрос о параметрах контуров, которые могут наноситься при помощи такого устройства. Такие контуры, внутренняя часть которых не заполняется даже в том случае, если исходный рисунок закрашен, должны передаваться на контроллер гравера файлами не в пиксельном (jpeg), а векторном формате. Это значит, что изображение или надпись, наносимые на поверхность обрабатываемого изделия при помощи такого гравера, будут состоять не из пикселей, а из точек. Такие изображения и надписи можно как угодно масштабировать, ориентируясь на площадь поверхности, на которую они должны быть нанесены. При помощи лазерного гравера на поверхность обрабатываемого изделия можно нанести практически любой рисунок и надпись, но для этого их компьютерные макеты необходимо перевести в векторный формат. Выполнить такую процедуру несложно: для этого используются специальные программы Inkscape или Adobe Illustrator. Файл, уже переведенный в векторный формат, необходимо преобразовать еще раз, чтобы его смог корректно воспринимать контроллер гравировальной установки. Для такого преобразования используется программа Inkscape Laserengraver. Окончательная настройка и подготовка к работе Окончательная настройка и подготовка к работе Изготовив лазерный гравировальный станок своими руками и закачав в его управляющий компьютер необходимое программное обеспечение, не приступайте к работе сразу: оборудование нуждается в окончательной настройке и регулировке. В чем заключается такая регулировка? Прежде всего необходимо убедиться, что максимальные перемещения лазерной головки станка по осям X и Y совпадают со значениями, полученными при преобразовании векторного файла. Кроме того, в зависимости от толщины материала, из которого изготовлено обрабатываемое изделие, надо отрегулировать параметры тока, подаваемого на лазерную головку. Делать это нужно для того, чтобы не прожечь изделие, на поверхности которого требуется выполнить гравировку. Очень важным и ответственным процессом является точная настройка (юстировка) лазерной головки. Юстировка нужна для того, чтобы отрегулировать мощность и разрешение луча, вырабатываемого лазерной головкой вашего гравера. На дорогих серийных моделях лазерных гравировальных установок юстировка выполняется при помощи дополнительного маломощного лазера, установленного в основную рабочую головку. Однако в самодельных граверах, как правило, используются недорогие лазерные головки, поэтому такой способ точной настройки луча для них не подходит. Испытайте свой самодельный лазерный гравер сначала на простых рисунках Достаточно качественная юстировка самодельного лазерного гравера может быть выполнена при помощи светодиода, извлеченного из лазерной указки. Провода светодиода подсоединяются к источнику питания с напряжением 3 В, а сам он фиксируется на рабочем конце штатного лазера. Попеременно включая и регулируя положение лучей, исходящих от тестового светодиода и лазерной головки, добиваются их совмещения в одной точке. Удобство использования светодиода от лазерной указки заключается в том, что юстировка с его помощью может выполняться без риска нанесения вреда как рукам, так и глазам оператора гравировальной установки. ролик показывает процесс подключения гравера к компьютеру, настройку софта и подготовку станка к работе. Лазерный резак/гравер своими руками — МозгоЧины Лазерный резак/гравер своими руками — МозгоЧины   Доброго дня,мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino. Этамозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого. Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт. То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует. Шаг 1: Материалы Шаг 1: Материалы • Arduino R3• Proto Board – плата с дисплеем• шаговые двигатели• 3-х ватный лазер• охлаждение для лазера• блок питания• регулятор DC-DC• транзистор MOSFET• платы управления двигателями• концевые выключатели• корпус (достаточно большой, чтобы вместить почти все детали списка)• зубчатые ремни• шарикоподшипники 10мм• шкивы для зубчатых ремней• шарикоподшипники• 2 доски 135х 10х2 см• 2 доски 125х10х2 см• 4 гладких стержня диаметром 1см• различные болты и гайки• винты 3.8см• смазка• стяжки-хомуты• компьютер• циркулярная Пила• отвертка• различные сверла• наждачная бумага • тиски Шаг 2: Электросхема Шаг 2: Электросхема Электроцепь лазерной самоделки информативно представлена на фото, есть лишь несколько уточнений. Шаговые двигатели: думаю, вы заметили, что два двигателя запускаются от одной платы управления. Это нужно для того чтобы одна сторона ремня не отставала от другой, то есть два двигателя работают синхронно и сохраняют натяжения зубчатого ремня, нужное для качественной работыподелки. Мощность лазера: при настройке регулятора DC-DC убедитесь, что на лазер подается постоянное напряжение, не превышающее технические характеристики лазера, иначе вы его просто сожжете. Мой лазер рассчитан на 5В и 2.4А, поэтому регулятор выставлен на 2А и напряжение немного ниже 5В. Транзистор MOSFET: это важная деталь данной мозгоподелки, так как именно этот транзистор включает и выключает лазер, получая сигнал от Arduino. Так как ток от микроконтроллера очень слабый, то только этот транзистор MOSFET может его воспринимать и запирать или отпирать контур питания лазера, другие транзисторы на такой слаботочный сигнал просто не реагируют. MOSFET монтируется между лазером и «землей» от регулятора постоянного тока. Охлаждение: при создании своего лазерного резака я столкнулся с проблемой охлаждения лазерного диода, для избежания его перегрева. Проблема решилась установкой компьютерного вентилятора, с которым лазер отлично функционировал даже при работе 9 часов подряд, а простой радиатор не справлялся с задачей охлаждения. Еще я установил кулеры рядом с платами управления двигателями, так как они тоже прилично греются, даже если резак не работает, а просто включен. Шаг 3: Сборка Шаг 3: Сборка В приложенных файлах корпус находится 3D модель лазерного резака, показывающая размеры и принцип сборки рамки рабочего стола. Челночная конструкция: она состоит одного челнока отвечающего за ось Y, и двух спаренных челнока отвечающих за ось X. Ось Z не нужна, так как это не 3D принтер, но вместо нее лазер будет попеременно включаться и выключаться, то есть ось Z заменяется глубиной прожига. Все размеры челночной конструкции я постарался отразить на фото, уточню лишь, что все установочные отверстия для стержней в бортах и челноках глубиной 1.2см. Направляющие стержни: стержни стальные (хотя алюминиевые предпочтительней, но стальные проще достать), довольно большим диаметром в 1 см, но такая толщина стержня позволит избежать провисания. Заводская смазка со стержней удалена, а сами стержни тщательно отшлифованы шлифмашинкой и наждачной бумагой до идеальной гладкости для хорошего скольжения. А после шлифовки стержни обработаны смазкой с белым литием, которая предотвращает окисление и улучшает скольжение. Ремни и шаговые двигатели: Для установки шаговых двигателей и зубчатых ремней я пользовался обычными инструментами и материалами, попавшимися под руку. Сначала монтируются двигатели и шарикоподшипники, а затем сами ремни. В качестве кронштейна для двигателей был использован лист металла примерно одинаковый по ширине и в два раза больше по длине, чем сам двигатель. В этом листе просверлено 4 отверстия для крепления на двигатель и два для крепления к корпусу самоделки, лист согнут под углом 90 градусов и прикручен саморезами к корпусу. С противоположной стороны от места крепления двигателя аналогичным образом установлена подшипниковая система, состоящая из болта, двух шарикоподшипников, шайбы и металлического листа. По центру этого листа сверлиться отверстие, с помощью которого он крепится к корпусу, далее лист загибается пополам и уже по центру обоих половинок сверлится отверстие для установки подшипниковой системы. На полученную таким образом пару двигатель-подшипник надевается зубчатый ремень, который крепится к деревянному основанию челнока обычным саморезом. Более понятно этот процесс представлен на фото. Шаг 4: Софт Шаг 4: Софт К счастью программное обеспечение для данной мозгоподелки бесплатно и с открытым исходным кодом. Все необходимое находится по нижеприведенным ссылкам: Inkscape (для создания и преобразования контуров для прожига), с расширением для лазерного гравера. UniversalGcodeSender-v1.0.7 Arduino IDE With the GBRL Library Все необходимое загружается на компьютер и сохраняется. Далее устанавливается Inkscape, и распаковывается архивlasergraver. Все что было в архиве копируется в папку Inkscape, чтобы было вот так C: Program Files (x86) Inkscape Share Extensions. На картинке показано что именно нужно копировать. Далее по отдельности устанавливается Arduino IDE и GRBL библиотека, а потом просто распаковывается UniversalGcodeSender-v1.0.7.zip. Этот Universal G code является программой, которая посылает данные дизайна (контуров гравировки/резки) в Arduino. После распаковки этого архива, нужно найти и запустить файл start-windows.bat. Настройка параметров Arduino: Первым делом загружается GRBL код в Arduino, для этого в Arduino IDE открывается вкладка Sketch/Import Library и выбирается пункт GRBL, затем из списка выбирается нужный код и загружается на Arduino. Для дополнительной информации полезно перейти по ссылке With the GRBL Library. Когда код загружен, необходимо настроить параметры в соответствии со своим лазерным резаком и в этом поможет вот эта ссылка, где подробно описывается каждый параметр настройки. А еще полезна эта ссылка, которая поможет рассчитать значения параметров для используемых материалов. Шаг 5: Контуры для резки Шаг 5: Контуры для резки Важные моменты: необходимо понимать и помнить, что это мозгоподелка не заполняет контур, если рисунок закрашен. Более понятно это показано на рисунке. И еще, файл дизайна примерфайлаконтура использует не пиксельный формат, как jpeg, а векторный. То есть изображение состоит из точек, а не пикселей, и его можно как угодно масштабировать, то есть изменять размеры контура для резки. Создание векторного рисунка: После определения того, что нужно вырезать/выгравировать, необходимо перенести это в векторный рисунок. Для этого подходят Inkscape или Adobe Illustrator, но не Photoshop или GIMP, так как последние не работают с векторной графикой. Преобразование векторного рисунка: Векторный рисунок должен быть преобразован в формат понятный лазерному резаку и для этого подходит расширение Inkscape Laserengraver. Более подробно на видео. Шаг 6: Настройка и резка
  9. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  10. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  11. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  12. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  13. Необходимые материалы
  14. Лазерный резак/гравер своими руками — МозгоЧины
  15. Лазерный резак/гравер своими руками — МозгоЧины
  16. Лазерный резак/гравер своими руками — МозгоЧины
  17. Шаг 1: Материалы
  18. Как сделать лазерный по металлу и дереву гравер своими руками
  19. Как сделать лазерный гравер своими руками: пошаговая инструкция
  20. Как собрать самодельный лазерный гравер по дереву?
  21. Сборка внутренней части
  22. Сборка внешней части
  23. Что требуется учесть, при создании самодельного гравера?
  24. Преимущества и недостатки лазерного самодельного гравера
  25. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками. Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов. Самодельный лазерный станок в процессе гравировки по дереву Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике. Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт. Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку. Этот гравер справится и с тонким пластиком Необходимые материалы Необходимые материалы Для того чтобы самостоятельно изготовить лазерный гравер на Arduino, потребуются следующие расходные материалы, механизмы и инструменты: аппаратная платформа Arduino R3; плата Proto Board, оснащенная дисплеем; шаговые двигатели, в качестве которых можно использовать электромоторы из принтера или из DVD-плеера; лазер, мощность которого составляет 3 Вт; устройство для охлаждения лазера; регулятор напряжения постоянного тока DC-DC; транзистор MOSFET; электронные платы, при помощи которых осуществляется управление двигателями лазерного гравера; выключатели концевого типа; корпус, в котором можно разместить все элементы конструкции самодельного гравера; зубчатые ремни и шкивы для их установки; шарикоподшипники различных типоразмеров; четыре деревянных доски (две из них с размерами 135х10х2 см, а две другие – 125х10х2 см); четыре металлических стержня круглого сечения, диаметр которых составляет 10 мм; болты, гайки и винты; смазочный материал; стяжки-хомуты; компьютер; сверла различного диаметра; циркулярная пила; наждачная бумага; тиски; стандартный набор слесарных инструментов. Наибольшего вложения потребует электронная часть станка Электрическая часть самодельного лазерного гравера Электрическая часть самодельного лазерного гравера Основным элементом электрической схемы представленного устройства является лазерный излучатель, на вход которого должно подаваться постоянное напряжение со значением, не превышающим допустимых параметров. Если не соблюсти данное требование, лазер может просто сгореть. Лазерный излучатель, используемый в гравировальной установке представленной конструкции, рассчитан на напряжение 5 В и силу тока, не превышающую 2,4 А, поэтому настройка регулятора DC-DC должна быть выполнена на силу тока 2 А и напряжение до 5 В. Электрическая схема гравера Транзистор MOSFET, который является важнейшим элементом электрической части лазерного гравера, необходим для того, чтобы, получая сигнал от контроллера «Ардуино», включать и выключать лазерный излучатель. Электрический сигнал, вырабатываемый контроллером, является очень слабым, поэтому воспринимать его, а затем отпирать и запирать контур питания лазера может только транзистор MOSFET. В электрической схеме лазерного гравера такой транзистор устанавливается между плюсовым контактом лазера и минусовым регулятора постоянного тока. Шаговые электродвигатели лазерного гравера подключаются через одну электронную плату управления, что обеспечивает синхронность их работы. Благодаря такому подключению зубчатые ремни, приводимые в движение несколькими двигателями, не провисают и сохраняют стабильное натяжение в процессе своей работы, что обеспечивает качество и точность выполняемой обработки. Следует иметь в виду, что лазерный диод, используемый в самодельной гравировальной установке, не должен перегреваться. Для этого необходимо обеспечить его эффективное охлаждение. Решается такая задача достаточно просто: рядом с диодом устанавливают обычный компьютерный вентилятор. Чтобы исключить перегрев плат управления работой шаговых электродвигателей, рядом с ними также размещают компьютерные кулеры, так как обычные радиаторы с такой задачей не справляются. Фотографии процесса сборки электросхемы Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 Процесс сборки Процесс сборки Самодельный гравировальный станок предложенной конструкции – это устройство челночного типа, один из подвижных элементов которого отвечает за перемещение по оси Y, а два других, спаренных, – за перемещение по оси X. За ось Z, которая также оговаривается в параметрах такого 3D-принтера, принимается глубина, на которую осуществляется прожиг обрабатываемого материала. Глубина отверстий, в которые устанавливаются элементы челночного механизма лазерного гравера, должна составлять не менее 12 мм. Рамка рабочего стола – размеры и допуски Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 В качестве направляющих элементов, по которым будет перемещаться рабочая головка лазерного гравировального устройства, могут выступать алюминиевые стержни диаметром не менее 10 мм. Если найти стержни из алюминия не представляется возможным, для этих целей можно использовать стальные направляющие такого же диаметра. Необходимость применения стержней именно такого диаметра объясняется тем, что в таком случае рабочая головка лазерного гравировального устройства не будет провисать. Изготовление подвижной каретки Поверхность стержней, которые будут использоваться в качестве направляющих элементов для лазерного гравировального устройства, надо очистить от заводской смазки и тщательно отшлифовать до идеальной гладкости. Затем на них следует нанести смазывающий состав на основе белого лития, который улучшит процесс скольжения. Установка шаговых двигателей на корпус самодельного гравировального устройства осуществляется при помощи кронштейнов, изготовленных из листового металла. Чтобы сделать такой кронштейн, лист металла, ширина которого приблизительно соответствует ширине самого двигателя, а длина в два раза превышает длину его основания, сгибают под прямым углом. На поверхности такого кронштейна, где будет располагаться основание электромотора, сверлят 6 отверстий, 4 из которых необходимы для фиксации самого двигателя, а два остальных – для крепления кронштейна к корпусу при помощи обычных саморезов. Для установки на вал электромотора приводного механизма, состоящего из двух шкивов, шайбы и болта, также используется кусок металлического листа соответствующего размера. Чтобы смонтировать такой узел, из металлического листа формируют П-образный профиль, в котором просверливаются отверстия для его крепления к корпусу гравера и для выхода вала электродвигателя. Шкивы, на которые будут надеваться зубчатые ремни, насаживаются на вал приводного электромотора и размещаются во внутренней части П-образного профиля. Надетые на шкивы зубчатые ремни, которые должны приводить в движение челноки гравировального устройства, соединяются с их деревянными основаниями при помощи саморезов. Установка шаговых двигателей Фото-1 Фото-2 Фото-3 Фото-4 Фото-5 Фото-6 Установка программного обеспечения Установка программного обеспечения Вашему лазерному гроверу, который должен работать в автоматическом режиме, потребуется не только установка, но и настройка специального программного обеспечения. Важнейшим элементом такого обеспечения является программа, которая позволяет создавать контуры желаемого рисунка и преобразовывать их под расширение, понятное управляющим элементам лазерного гравера. Такая программа имеется в свободном доступе, и ее можно без особых проблем скачать на свой компьютер. Программа, скачанная на управляющий гравировальным устройством компьютер, распаковывается из архива и устанавливается. Кроме того, вам потребуется библиотека контуров, а также программа, которая будет отправлять данные по создаваемому рисунку или надписи на контроллер «Ардуино». Такую библиотеку (как и программу для передачи данных на контроллер) также можно найти в свободном доступе. Для того чтобы ваша лазерная самоделка работала корректно, а гравировка, выполняемая с ее помощью, была качественной, вам потребуется настройка и самого контроллера под параметры гравировального устройства. Особенности использования контуров Особенности использования контуров Если с вопросом о том, как сделать ручной лазерный гравер, вы уже разобрались, то необходимо прояснить и вопрос о параметрах контуров, которые могут наноситься при помощи такого устройства. Такие контуры, внутренняя часть которых не заполняется даже в том случае, если исходный рисунок закрашен, должны передаваться на контроллер гравера файлами не в пиксельном (jpeg), а векторном формате. Это значит, что изображение или надпись, наносимые на поверхность обрабатываемого изделия при помощи такого гравера, будут состоять не из пикселей, а из точек. Такие изображения и надписи можно как угодно масштабировать, ориентируясь на площадь поверхности, на которую они должны быть нанесены. При помощи лазерного гравера на поверхность обрабатываемого изделия можно нанести практически любой рисунок и надпись, но для этого их компьютерные макеты необходимо перевести в векторный формат. Выполнить такую процедуру несложно: для этого используются специальные программы Inkscape или Adobe Illustrator. Файл, уже переведенный в векторный формат, необходимо преобразовать еще раз, чтобы его смог корректно воспринимать контроллер гравировальной установки. Для такого преобразования используется программа Inkscape Laserengraver. Окончательная настройка и подготовка к работе Окончательная настройка и подготовка к работе Изготовив лазерный гравировальный станок своими руками и закачав в его управляющий компьютер необходимое программное обеспечение, не приступайте к работе сразу: оборудование нуждается в окончательной настройке и регулировке. В чем заключается такая регулировка? Прежде всего необходимо убедиться, что максимальные перемещения лазерной головки станка по осям X и Y совпадают со значениями, полученными при преобразовании векторного файла. Кроме того, в зависимости от толщины материала, из которого изготовлено обрабатываемое изделие, надо отрегулировать параметры тока, подаваемого на лазерную головку. Делать это нужно для того, чтобы не прожечь изделие, на поверхности которого требуется выполнить гравировку. Очень важным и ответственным процессом является точная настройка (юстировка) лазерной головки. Юстировка нужна для того, чтобы отрегулировать мощность и разрешение луча, вырабатываемого лазерной головкой вашего гравера. На дорогих серийных моделях лазерных гравировальных установок юстировка выполняется при помощи дополнительного маломощного лазера, установленного в основную рабочую головку. Однако в самодельных граверах, как правило, используются недорогие лазерные головки, поэтому такой способ точной настройки луча для них не подходит. Испытайте свой самодельный лазерный гравер сначала на простых рисунках Достаточно качественная юстировка самодельного лазерного гравера может быть выполнена при помощи светодиода, извлеченного из лазерной указки. Провода светодиода подсоединяются к источнику питания с напряжением 3 В, а сам он фиксируется на рабочем конце штатного лазера. Попеременно включая и регулируя положение лучей, исходящих от тестового светодиода и лазерной головки, добиваются их совмещения в одной точке. Удобство использования светодиода от лазерной указки заключается в том, что юстировка с его помощью может выполняться без риска нанесения вреда как рукам, так и глазам оператора гравировальной установки. ролик показывает процесс подключения гравера к компьютеру, настройку софта и подготовку станка к работе. Лазерный резак/гравер своими руками — МозгоЧины Лазерный резак/гравер своими руками — МозгоЧины   Доброго дня,мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino. Этамозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого. Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт. То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует. Шаг 1: Материалы Шаг 1: Материалы • Arduino R3• Proto Board – плата с дисплеем• шаговые двигатели• 3-х ватный лазер• охлаждение для лазера• блок питания• регулятор DC-DC• транзистор MOSFET• платы управления двигателями• концевые выключатели• корпус (достаточно большой, чтобы вместить почти все детали списка)• зубчатые ремни• шарикоподшипники 10мм• шкивы для зубчатых ремней• шарикоподшипники• 2 доски 135х 10х2 см• 2 доски 125х10х2 см• 4 гладких стержня диаметром 1см• различные болты и гайки• винты 3.8см• смазка• стяжки-хомуты• компьютер• циркулярная Пила• отвертка• различные сверла• наждачная бумага • тиски Шаг 2: Электросхема Шаг 2: Электросхема Электроцепь лазерной самоделки информативно представлена на фото, есть лишь несколько уточнений. Шаговые двигатели: думаю, вы заметили, что два двигателя запускаются от одной платы управления. Это нужно для того чтобы одна сторона ремня не отставала от другой, то есть два двигателя работают синхронно и сохраняют натяжения зубчатого ремня, нужное для качественной работыподелки. Мощность лазера: при настройке регулятора DC-DC убедитесь, что на лазер подается постоянное напряжение, не превышающее технические характеристики лазера, иначе вы его просто сожжете. Мой лазер рассчитан на 5В и 2.4А, поэтому регулятор выставлен на 2А и напряжение немного ниже 5В. Транзистор MOSFET: это важная деталь данной мозгоподелки, так как именно этот транзистор включает и выключает лазер, получая сигнал от Arduino. Так как ток от микроконтроллера очень слабый, то только этот транзистор MOSFET может его воспринимать и запирать или отпирать контур питания лазера, другие транзисторы на такой слаботочный сигнал просто не реагируют. MOSFET монтируется между лазером и «землей» от регулятора постоянного тока. Охлаждение: при создании своего лазерного резака я столкнулся с проблемой охлаждения лазерного диода, для избежания его перегрева. Проблема решилась установкой компьютерного вентилятора, с которым лазер отлично функционировал даже при работе 9 часов подряд, а простой радиатор не справлялся с задачей охлаждения. Еще я установил кулеры рядом с платами управления двигателями, так как они тоже прилично греются, даже если резак не работает, а просто включен. Шаг 3: Сборка Шаг 3: Сборка В приложенных файлах корпус находится 3D модель лазерного резака, показывающая размеры и принцип сборки рамки рабочего стола. Челночная конструкция: она состоит одного челнока отвечающего за ось Y, и двух спаренных челнока отвечающих за ось X. Ось Z не нужна, так как это не 3D принтер, но вместо нее лазер будет попеременно включаться и выключаться, то есть ось Z заменяется глубиной прожига. Все размеры челночной конструкции я постарался отразить на фото, уточню лишь, что все установочные отверстия для стержней в бортах и челноках глубиной 1.2см. Направляющие стержни: стержни стальные (хотя алюминиевые предпочтительней, но стальные проще достать), довольно большим диаметром в 1 см, но такая толщина стержня позволит избежать провисания. Заводская смазка со стержней удалена, а сами стержни тщательно отшлифованы шлифмашинкой и наждачной бумагой до идеальной гладкости для хорошего скольжения. А после шлифовки стержни обработаны смазкой с белым литием, которая предотвращает окисление и улучшает скольжение. Ремни и шаговые двигатели: Для установки шаговых двигателей и зубчатых ремней я пользовался обычными инструментами и материалами, попавшимися под руку. Сначала монтируются двигатели и шарикоподшипники, а затем сами ремни. В качестве кронштейна для двигателей был использован лист металла примерно одинаковый по ширине и в два раза больше по длине, чем сам двигатель. В этом листе просверлено 4 отверстия для крепления на двигатель и два для крепления к корпусу самоделки, лист согнут под углом 90 градусов и прикручен саморезами к корпусу. С противоположной стороны от места крепления двигателя аналогичным образом установлена подшипниковая система, состоящая из болта, двух шарикоподшипников, шайбы и металлического листа. По центру этого листа сверлиться отверстие, с помощью которого он крепится к корпусу, далее лист загибается пополам и уже по центру обоих половинок сверлится отверстие для установки подшипниковой системы. На полученную таким образом пару двигатель-подшипник надевается зубчатый ремень, который крепится к деревянному основанию челнока обычным саморезом. Более понятно этот процесс представлен на фото. Шаг 4: Софт Шаг 4: Софт К счастью программное обеспечение для данной мозгоподелки бесплатно и с открытым исходным кодом. Все необходимое находится по нижеприведенным ссылкам: Inkscape (для создания и преобразования контуров для прожига), с расширением для лазерного гравера. UniversalGcodeSender-v1.0.7 Arduino IDE With the GBRL Library Все необходимое загружается на компьютер и сохраняется. Далее устанавливается Inkscape, и распаковывается архивlasergraver. Все что было в архиве копируется в папку Inkscape, чтобы было вот так C: Program Files (x86) Inkscape Share Extensions. На картинке показано что именно нужно копировать. Далее по отдельности устанавливается Arduino IDE и GRBL библиотека, а потом просто распаковывается UniversalGcodeSender-v1.0.7.zip. Этот Universal G code является программой, которая посылает данные дизайна (контуров гравировки/резки) в Arduino. После распаковки этого архива, нужно найти и запустить файл start-windows.bat. Настройка параметров Arduino: Первым делом загружается GRBL код в Arduino, для этого в Arduino IDE открывается вкладка Sketch/Import Library и выбирается пункт GRBL, затем из списка выбирается нужный код и загружается на Arduino. Для дополнительной информации полезно перейти по ссылке With the GRBL Library. Когда код загружен, необходимо настроить параметры в соответствии со своим лазерным резаком и в этом поможет вот эта ссылка, где подробно описывается каждый параметр настройки. А еще полезна эта ссылка, которая поможет рассчитать значения параметров для используемых материалов. Шаг 5: Контуры для резки Шаг 5: Контуры для резки Важные моменты: необходимо понимать и помнить, что это мозгоподелка не заполняет контур, если рисунок закрашен. Более понятно это показано на рисунке. И еще, файл дизайна примерфайлаконтура использует не пиксельный формат, как jpeg, а векторный. То есть изображение состоит из точек, а не пикселей, и его можно как угодно масштабировать, то есть изменять размеры контура для резки. Создание векторного рисунка: После определения того, что нужно вырезать/выгравировать, необходимо перенести это в векторный рисунок. Для этого подходят Inkscape или Adobe Illustrator, но не Photoshop или GIMP, так как последние не работают с векторной графикой. Преобразование векторного рисунка: Векторный рисунок должен быть преобразован в формат понятный лазерному резаку и для этого подходит расширение Inkscape Laserengraver. Более подробно на видео. Шаг 6: Настройка и резка
  26. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  27. Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения
  28. Необходимые материалы
  29. Необходимые материалы
  30. Электрическая часть самодельного лазерного гравера
  31. Электрическая часть самодельного лазерного гравера
  32. Процесс сборки
  33. Процесс сборки
  34. Установка программного обеспечения
  35. Установка программного обеспечения
  36. Особенности использования контуров
  37. Особенности использования контуров
  38. Окончательная настройка и подготовка к работе
  39. Окончательная настройка и подготовка к работе
  40. Лазерный резак/гравер своими руками — МозгоЧины
  41. Лазерный резак/гравер своими руками — МозгоЧины
  42. Шаг 1: Материалы
  43. Шаг 1: Материалы
  44. Шаг 2: Электросхема
  45. Шаг 2: Электросхема
  46. Шаг 3: Сборка
  47. Шаг 3: Сборка
  48. Шаг 4: Софт
  49. Шаг 4: Софт
  50. Шаг 5: Контуры для резки
  51. Шаг 5: Контуры для резки
  52. Шаг 6: Настройка и резка

Как сделать лазерный по металлу и дереву гравер своими руками

Лазерный гравер по металлу своими руками
Лазерный гравер по металлу своими руками

Такое хобби, как гравировка по разным материалам, увлекает многих людей разного возраста. В наше время такую операцию облегчает лазерный луч. Заводские установки для такой гравировки стоят недешево, и далеко не все могут себе их позволить. О том, как сделать лазерный гравер своими руками, стоит поговорить подробнее.

Лазерная гравировка представляет собой процесс формирования рельефного изображения на изделии с помощью сфокусированного лазерного луча. Она позволяет делать надписи, наносить маркировку, создавать художественные произведения, сувениры и украшения.

Для этого используется специальный станок – гравер, в котором устанавливается источник лазерного излучения, а излучаемая энергия передается через оптическую систему на фокусирующий элемент. В результате на изделие подается тонкий луч с концентрированной энергией.

Ее достаточно для того, чтобы выжечь поверхностный слой материала в месте воздействия луча. Образуются углубления, из которых можно собрать нужный рисунок.

 Важно!  В зависимости от мощности луча и времени воздействия обеспечивается разная глубина и диаметр углубления. Чем меньше расстояние от линзы до поверхности, тем точнее фокусировка.

Как сделать лазерный гравер своими руками: пошаговая инструкция

Лазерный гравер можно сделать своими руками. В качестве основного элемента используется полупроводниковый лазер (светодиод) мощностью до 10 Вт. Фокусирование светового потока обеспечивается оптической системой, собираемой из нескольких линз. Для возможности управления процессом формируется трансмиссионная и контролирующая системы.

Трансмиссия составляется из сервоприводов, синхронизирующих источник излучения с программным обеспечением. Контроль обеспечивают датчики и специальные схемы. При длительной работе гравера необходимо эффективное охлаждение диода с помощью кулеров.

Опорные элементы и вспомогательные механизмы составляют механическую часть станка, которая отвечает за надежность работы всего устройства.

Как собрать самодельный лазерный гравер по дереву?

Для создания рельефного рисунка на дереве не нужна большая энергия. Готовый источник излучения и оптику можно взять из DVD-RW привода. Простой самодельный гравер показан на фото 1. Потребуются такие детали:

  • П-образная или круглая трубка из цветного металла с внутренним диаметром 18–20 мм;
  • электролитический конденсатор 2200 мкФ на 20 В;
  • пленочный конденсатор 100 нФ;
  • резистор 5 Ом;
  • контактная кнопка и выключатель;
  • аккумулятор типа 18650 и холдер;
  • контроллер заряда;
  • гнездо Jack 2,1 ×5,5 мм;
  • коробка для обувной губки;
  • теплопроводящий клей.

Надо заранее приготовить и инструмент: электродрель, паяльник, кусачки, плоскогубцы, отвертка. При изготовлении корпуса потребуются: пистолет для термоклея, ножовка по металлу и дереву, напильники.

Сборка внутренней части

Внутренняя рабочая часть – это, по сути, сам лазер, включающий излучатель и фокусирующую систему. Рекомендуется такой порядок сборки лазера.

Извлекается светодиод и линзы из DVD-привода. Для гравера подходят только элементы, содержащиеся в пишущей головке.

Тестируется диод. На вывод надо подать напряжение 3 В и убедиться, что происходит свечение.

Отпиливается отрезок трубки длиной 150 мм и просверливается в ней отверстие под контактную кнопку.

В коробке для губки вырезаются гнезда для трубки, аккумулятора и выключателя.

Собирается электрическая схема. К контроллеру заряда прикрепляется аккумулятор, при этом контакты «+» и «- » соединены с гнездом, а 2 других контакта – уходят на светодиод. На плату собирается схема питания лазера и изолируется скотчем.

К схеме подсоединяется светодиод и кнопка.

В трубке устанавливается лазер и закрепляется клеем, а в подготовленное отверстие вставляется кнопка. Остальные элементы схемы закрепляются скотчем.

Трубка с лазером закрепляется в коробке. Клеем закрепляется в ней аккумулятор и контроллер. Электрическая схема выводится наружу.

Фокусирующая линза устанавливается в трубке перед лазером. Для определения оптимального места надо проверить действие на листе бумаги. Перемещая линзу, определяется максимальный прожиг листа. В этой точке линза закрепляется термоклеем.

Коробка закрывается крышкой и можно считать, что лазер готов.

Сборка внешней части

Внешняя часть гравера отвечает за управление станком. Она состоит из механической системы перемещения, корпуса и системы управления (электроники).

Собирается внешняя часть в таком порядке.

Подготавливаются направляющие нужной длины: 2 – укороченные и 2 – длинные. В каждой группе длина направляющих одинакова.

Вырезается основание, оно должно быть на 10–15 см больше длины направляющих.

Подготавливаются Т-образные опоры для крепления направляющих к основанию. Они с помощью болтов вертикально закрепляются на основании.

Устанавливаются направляющие оси Y, а на их свободные концы одеваются каретки оси Х. Вставляются все направляющие на свои опоры.

Сверлятся отверстия для электродвигателей и осей шестеренок.

Устанавливаются шаговые двигатели, а на их валы закрепляются шестеренки.

В отверстия вставляются стержни оси и закрепляются эпоксидным клеем.

Устанавливаются прижимные ролики.

Устанавливаются и натягиваются ремни зубчатого типа для передачи вращения.

На каретки устанавливаются лазеры. Все провода аккуратно размещаются в специальных каналах. Концы выводятся наружу.

Завершает монтаж изготовление корпуса и подключение системы управления:

  1. В основании делаются отверстия и устанавливаются уголки. Высота должна позволять поместить все элементы станка.
  2. Из фанеры или оргстекла вырезаются стенки и закрепляются на уголках.
  3. Крышка присоединяется с помощью петель.
  4. В передней стенке делается отверстие для проводов.
  5. Закрепляется выключатель и USB гнезда.
  6. Монтируется и настраивается преобразователь напряжения.

К станку подключается компьютер и устанавливается программное обеспечение. Изображение в понятный для Arduino формат позволяет перевести программа Inkscape Lasertngraver.

Порядок сборки самодельного гравера для металла мало отличается от методики монтажа станка для обработки дерева. Главное отличие заключается в необходимости использования более мощного источника, что накладывает свои особенности.

Что требуется учесть, при создании самодельного гравера?

При изготовлении и эксплуатации любого лазерного оборудования важно учитывать, что излучение опасно для человека. При настройке и тестировании лазеров появляется риск ожогов, нарушения зрения.

Это указывает на необходимость соблюдения мер безопасности. Прежде всего, необходимы затемненные очки, защищающие глаза.

В целом сборка своими руками гравера мало отличается от монтажа иных систем с элементами оптики и электроники.

Преимущества и недостатки лазерного самодельного гравера

Выделяются такие преимущества лазерных граверов:

  • облегчение и ускорение процесса гравировки;
  • возможность обработки труднодоступных мест, куда обычный инструмент просто не может войти;
  • можно производить гравировку на очень тонких покрытиях;
  • возможность использования ЧПУ и проведения процесса по заданной программе;
  • самостоятельное изготовление экономит средства, необходимые на закупку заводских моделей.

Следует отметить и некоторые минусы:

  • сложность в контроле глубины выжигания (только косвенный контроль по мощности);
  • изменение параметров гравировки при неоднородности структуры материала по поверхности;
  • риск деформации некоторых материалов при температурном воздействии.

Эффективность гравера и качество гравировки зависит от используемого источника излучения, оптики и мастерства исполнителя.

Лазерный гравер становится все более популярным среди домашних мастеров. Такие аппараты позволяют создавать уникальные художественные произведения. Собрать гравер можно своими руками, причем источник лазерного излучения можно найти в старых DVD-приводах, принтерах, лазерных указках, светодиодных фонарях.

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками
Лазерный гравер по металлу своими руками

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками

Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками.

Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов.

Самодельный лазерный станок в процессе гравировки по дереву

Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике.

Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт.

Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку.

Этот гравер справится и с тонким пластиком

Необходимые материалы

Лазерный резак/гравер своими руками — МозгоЧины

Лазерный гравер по металлу своими руками

Лазерный резак/гравер своими руками — МозгоЧины

Лазерный гравер по металлу своими руками

Лазерный резак/гравер своими руками — МозгоЧины

Лазерный гравер по металлу своими руками

 
Доброго дня, мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino.

Эта мозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого.

Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт.

То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует.

Шаг 1: Материалы

Как сделать лазерный по металлу и дереву гравер своими руками

Лазерный гравер по металлу своими руками
Лазерный гравер по металлу своими руками

Такое хобби, как гравировка по разным материалам, увлекает многих людей разного возраста. В наше время такую операцию облегчает лазерный луч. Заводские установки для такой гравировки стоят недешево, и далеко не все могут себе их позволить. О том, как сделать лазерный гравер своими руками, стоит поговорить подробнее.

Лазерная гравировка представляет собой процесс формирования рельефного изображения на изделии с помощью сфокусированного лазерного луча. Она позволяет делать надписи, наносить маркировку, создавать художественные произведения, сувениры и украшения.

Для этого используется специальный станок – гравер, в котором устанавливается источник лазерного излучения, а излучаемая энергия передается через оптическую систему на фокусирующий элемент. В результате на изделие подается тонкий луч с концентрированной энергией.

Ее достаточно для того, чтобы выжечь поверхностный слой материала в месте воздействия луча. Образуются углубления, из которых можно собрать нужный рисунок.

 Важно!  В зависимости от мощности луча и времени воздействия обеспечивается разная глубина и диаметр углубления. Чем меньше расстояние от линзы до поверхности, тем точнее фокусировка.

Как сделать лазерный гравер своими руками: пошаговая инструкция

Лазерный гравер можно сделать своими руками. В качестве основного элемента используется полупроводниковый лазер (светодиод) мощностью до 10 Вт. Фокусирование светового потока обеспечивается оптической системой, собираемой из нескольких линз. Для возможности управления процессом формируется трансмиссионная и контролирующая системы.

Трансмиссия составляется из сервоприводов, синхронизирующих источник излучения с программным обеспечением. Контроль обеспечивают датчики и специальные схемы. При длительной работе гравера необходимо эффективное охлаждение диода с помощью кулеров.

Опорные элементы и вспомогательные механизмы составляют механическую часть станка, которая отвечает за надежность работы всего устройства.

Как собрать самодельный лазерный гравер по дереву?

Для создания рельефного рисунка на дереве не нужна большая энергия. Готовый источник излучения и оптику можно взять из DVD-RW привода. Простой самодельный гравер показан на фото 1. Потребуются такие детали:

  • П-образная или круглая трубка из цветного металла с внутренним диаметром 18–20 мм;
  • электролитический конденсатор 2200 мкФ на 20 В;
  • пленочный конденсатор 100 нФ;
  • резистор 5 Ом;
  • контактная кнопка и выключатель;
  • аккумулятор типа 18650 и холдер;
  • контроллер заряда;
  • гнездо Jack 2,1 ×5,5 мм;
  • коробка для обувной губки;
  • теплопроводящий клей.

Надо заранее приготовить и инструмент: электродрель, паяльник, кусачки, плоскогубцы, отвертка. При изготовлении корпуса потребуются: пистолет для термоклея, ножовка по металлу и дереву, напильники.

Сборка внутренней части

Внутренняя рабочая часть – это, по сути, сам лазер, включающий излучатель и фокусирующую систему. Рекомендуется такой порядок сборки лазера.

Извлекается светодиод и линзы из DVD-привода. Для гравера подходят только элементы, содержащиеся в пишущей головке.

Тестируется диод. На вывод надо подать напряжение 3 В и убедиться, что происходит свечение.

Отпиливается отрезок трубки длиной 150 мм и просверливается в ней отверстие под контактную кнопку.

В коробке для губки вырезаются гнезда для трубки, аккумулятора и выключателя.

Собирается электрическая схема. К контроллеру заряда прикрепляется аккумулятор, при этом контакты «+» и «- » соединены с гнездом, а 2 других контакта – уходят на светодиод. На плату собирается схема питания лазера и изолируется скотчем.

К схеме подсоединяется светодиод и кнопка.

В трубке устанавливается лазер и закрепляется клеем, а в подготовленное отверстие вставляется кнопка. Остальные элементы схемы закрепляются скотчем.

Трубка с лазером закрепляется в коробке. Клеем закрепляется в ней аккумулятор и контроллер. Электрическая схема выводится наружу.

Фокусирующая линза устанавливается в трубке перед лазером. Для определения оптимального места надо проверить действие на листе бумаги. Перемещая линзу, определяется максимальный прожиг листа. В этой точке линза закрепляется термоклеем.

Коробка закрывается крышкой и можно считать, что лазер готов.

Сборка внешней части

Внешняя часть гравера отвечает за управление станком. Она состоит из механической системы перемещения, корпуса и системы управления (электроники).

Собирается внешняя часть в таком порядке.

Подготавливаются направляющие нужной длины: 2 – укороченные и 2 – длинные. В каждой группе длина направляющих одинакова.

Вырезается основание, оно должно быть на 10–15 см больше длины направляющих.

Подготавливаются Т-образные опоры для крепления направляющих к основанию. Они с помощью болтов вертикально закрепляются на основании.

Устанавливаются направляющие оси Y, а на их свободные концы одеваются каретки оси Х. Вставляются все направляющие на свои опоры.

Сверлятся отверстия для электродвигателей и осей шестеренок.

Устанавливаются шаговые двигатели, а на их валы закрепляются шестеренки.

В отверстия вставляются стержни оси и закрепляются эпоксидным клеем.

Устанавливаются прижимные ролики.

Устанавливаются и натягиваются ремни зубчатого типа для передачи вращения.

На каретки устанавливаются лазеры. Все провода аккуратно размещаются в специальных каналах. Концы выводятся наружу.

Завершает монтаж изготовление корпуса и подключение системы управления:

  1. В основании делаются отверстия и устанавливаются уголки. Высота должна позволять поместить все элементы станка.
  2. Из фанеры или оргстекла вырезаются стенки и закрепляются на уголках.
  3. Крышка присоединяется с помощью петель.
  4. В передней стенке делается отверстие для проводов.
  5. Закрепляется выключатель и USB гнезда.
  6. Монтируется и настраивается преобразователь напряжения.

К станку подключается компьютер и устанавливается программное обеспечение. Изображение в понятный для Arduino формат позволяет перевести программа Inkscape Lasertngraver.

Порядок сборки самодельного гравера для металла мало отличается от методики монтажа станка для обработки дерева. Главное отличие заключается в необходимости использования более мощного источника, что накладывает свои особенности.

Что требуется учесть, при создании самодельного гравера?

При изготовлении и эксплуатации любого лазерного оборудования важно учитывать, что излучение опасно для человека. При настройке и тестировании лазеров появляется риск ожогов, нарушения зрения.

Это указывает на необходимость соблюдения мер безопасности. Прежде всего, необходимы затемненные очки, защищающие глаза.

В целом сборка своими руками гравера мало отличается от монтажа иных систем с элементами оптики и электроники.

Преимущества и недостатки лазерного самодельного гравера

Выделяются такие преимущества лазерных граверов:

  • облегчение и ускорение процесса гравировки;
  • возможность обработки труднодоступных мест, куда обычный инструмент просто не может войти;
  • можно производить гравировку на очень тонких покрытиях;
  • возможность использования ЧПУ и проведения процесса по заданной программе;
  • самостоятельное изготовление экономит средства, необходимые на закупку заводских моделей.

Следует отметить и некоторые минусы:

  • сложность в контроле глубины выжигания (только косвенный контроль по мощности);
  • изменение параметров гравировки при неоднородности структуры материала по поверхности;
  • риск деформации некоторых материалов при температурном воздействии.

Эффективность гравера и качество гравировки зависит от используемого источника излучения, оптики и мастерства исполнителя.

Лазерный гравер становится все более популярным среди домашних мастеров. Такие аппараты позволяют создавать уникальные художественные произведения. Собрать гравер можно своими руками, причем источник лазерного излучения можно найти в старых DVD-приводах, принтерах, лазерных указках, светодиодных фонарях.

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками
Лазерный гравер по металлу своими руками

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения

Лазерный гравер по металлу своими руками

Многие из тех домашних умельцев, которые в своей мастерской занимаются изготовлением и декоративным оформлением изделий из древесины и других материалов, наверняка задумывались над тем, как сделать лазерный гравер своими руками.

Наличие такого оборудования, серийные модели которого стоят достаточно дорого, позволяет не только наносить на поверхность обрабатываемого изделия сложнейшие рисунки с высокой точностью и детализацией, но и осуществлять лазерную резку различных материалов.

Самодельный лазерный станок в процессе гравировки по дереву

Самодельный лазерный гравер, который обойдется значительно дешевле, чем серийная модель, можно изготовить даже в том случае, если вы не обладаете глубокими знаниями в электронике и механике.

Лазерный гравер предлагаемой конструкции собирается на аппаратной платформе «Ардуино» (Arduino) и имеет мощность 3 Вт, тогда как у промышленных моделей этот параметр составляет не менее 400 Вт.

Однако даже такая невысокая мощность позволяет использовать данный аппарат для резки изделий из пенополистирола, пробковых листов, пластика и картона, а также выполнять качественную лазерную гравировку.

Этот гравер справится и с тонким пластиком

Необходимые материалы

Необходимые материалы

Для того чтобы самостоятельно изготовить лазерный гравер на Arduino, потребуются следующие расходные материалы, механизмы и инструменты:

  • аппаратная платформа Arduino R3;
  • плата Proto Board, оснащенная дисплеем;
  • шаговые двигатели, в качестве которых можно использовать электромоторы из принтера или из DVD-плеера;
  • лазер, мощность которого составляет 3 Вт;
  • устройство для охлаждения лазера;
  • регулятор напряжения постоянного тока DC-DC;
  • транзистор MOSFET;
  • электронные платы, при помощи которых осуществляется управление двигателями лазерного гравера;
  • выключатели концевого типа;
  • корпус, в котором можно разместить все элементы конструкции самодельного гравера;
  • зубчатые ремни и шкивы для их установки;
  • шарикоподшипники различных типоразмеров;
  • четыре деревянных доски (две из них с размерами 135х10х2 см, а две другие – 125х10х2 см);
  • четыре металлических стержня круглого сечения, диаметр которых составляет 10 мм;
  • болты, гайки и винты;
  • смазочный материал;
  • стяжки-хомуты;
  • компьютер;
  • сверла различного диаметра;
  • циркулярная пила;
  • наждачная бумага;
  • тиски;
  • стандартный набор слесарных инструментов.

Наибольшего вложения потребует электронная часть станка

Электрическая часть самодельного лазерного гравера

Электрическая часть самодельного лазерного гравера

Основным элементом электрической схемы представленного устройства является лазерный излучатель, на вход которого должно подаваться постоянное напряжение со значением, не превышающим допустимых параметров.

Если не соблюсти данное требование, лазер может просто сгореть.

Лазерный излучатель, используемый в гравировальной установке представленной конструкции, рассчитан на напряжение 5 В и силу тока, не превышающую 2,4 А, поэтому настройка регулятора DC-DC должна быть выполнена на силу тока 2 А и напряжение до 5 В.

Электрическая схема гравера

Транзистор MOSFET, который является важнейшим элементом электрической части лазерного гравера, необходим для того, чтобы, получая сигнал от контроллера «Ардуино», включать и выключать лазерный излучатель.

Электрический сигнал, вырабатываемый контроллером, является очень слабым, поэтому воспринимать его, а затем отпирать и запирать контур питания лазера может только транзистор MOSFET.

В электрической схеме лазерного гравера такой транзистор устанавливается между плюсовым контактом лазера и минусовым регулятора постоянного тока.

Шаговые электродвигатели лазерного гравера подключаются через одну электронную плату управления, что обеспечивает синхронность их работы. Благодаря такому подключению зубчатые ремни, приводимые в движение несколькими двигателями, не провисают и сохраняют стабильное натяжение в процессе своей работы, что обеспечивает качество и точность выполняемой обработки.

Следует иметь в виду, что лазерный диод, используемый в самодельной гравировальной установке, не должен перегреваться.

Для этого необходимо обеспечить его эффективное охлаждение. Решается такая задача достаточно просто: рядом с диодом устанавливают обычный компьютерный вентилятор. Чтобы исключить перегрев плат управления работой шаговых электродвигателей, рядом с ними также размещают компьютерные кулеры, так как обычные радиаторы с такой задачей не справляются.

Фотографии процесса сборки электросхемы
Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

Процесс сборки

Процесс сборки

Самодельный гравировальный станок предложенной конструкции – это устройство челночного типа, один из подвижных элементов которого отвечает за перемещение по оси Y, а два других, спаренных, – за перемещение по оси X.

За ось Z, которая также оговаривается в параметрах такого 3D-принтера, принимается глубина, на которую осуществляется прожиг обрабатываемого материала.

Глубина отверстий, в которые устанавливаются элементы челночного механизма лазерного гравера, должна составлять не менее 12 мм.

Рамка рабочего стола – размеры и допуски
Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

В качестве направляющих элементов, по которым будет перемещаться рабочая головка лазерного гравировального устройства, могут выступать алюминиевые стержни диаметром не менее 10 мм.

Если найти стержни из алюминия не представляется возможным, для этих целей можно использовать стальные направляющие такого же диаметра.

Необходимость применения стержней именно такого диаметра объясняется тем, что в таком случае рабочая головка лазерного гравировального устройства не будет провисать.

Изготовление подвижной каретки

Поверхность стержней, которые будут использоваться в качестве направляющих элементов для лазерного гравировального устройства, надо очистить от заводской смазки и тщательно отшлифовать до идеальной гладкости. Затем на них следует нанести смазывающий состав на основе белого лития, который улучшит процесс скольжения.

Установка шаговых двигателей на корпус самодельного гравировального устройства осуществляется при помощи кронштейнов, изготовленных из листового металла.

Чтобы сделать такой кронштейн, лист металла, ширина которого приблизительно соответствует ширине самого двигателя, а длина в два раза превышает длину его основания, сгибают под прямым углом.

На поверхности такого кронштейна, где будет располагаться основание электромотора, сверлят 6 отверстий, 4 из которых необходимы для фиксации самого двигателя, а два остальных – для крепления кронштейна к корпусу при помощи обычных саморезов.

Для установки на вал электромотора приводного механизма, состоящего из двух шкивов, шайбы и болта, также используется кусок металлического листа соответствующего размера.

Чтобы смонтировать такой узел, из металлического листа формируют П-образный профиль, в котором просверливаются отверстия для его крепления к корпусу гравера и для выхода вала электродвигателя. Шкивы, на которые будут надеваться зубчатые ремни, насаживаются на вал приводного электромотора и размещаются во внутренней части П-образного профиля.

Надетые на шкивы зубчатые ремни, которые должны приводить в движение челноки гравировального устройства, соединяются с их деревянными основаниями при помощи саморезов.

Установка шаговых двигателей
Фото-1 Фото-2 Фото-3
Фото-4 Фото-5 Фото-6

Установка программного обеспечения

Установка программного обеспечения

Вашему лазерному гроверу, который должен работать в автоматическом режиме, потребуется не только установка, но и настройка специального программного обеспечения.

Важнейшим элементом такого обеспечения является программа, которая позволяет создавать контуры желаемого рисунка и преобразовывать их под расширение, понятное управляющим элементам лазерного гравера.

Такая программа имеется в свободном доступе, и ее можно без особых проблем скачать на свой компьютер.

Программа, скачанная на управляющий гравировальным устройством компьютер, распаковывается из архива и устанавливается. Кроме того, вам потребуется библиотека контуров, а также программа, которая будет отправлять данные по создаваемому рисунку или надписи на контроллер «Ардуино».

Такую библиотеку (как и программу для передачи данных на контроллер) также можно найти в свободном доступе.

Для того чтобы ваша лазерная самоделка работала корректно, а гравировка, выполняемая с ее помощью, была качественной, вам потребуется настройка и самого контроллера под параметры гравировального устройства.

Особенности использования контуров

Особенности использования контуров

Если с вопросом о том, как сделать ручной лазерный гравер, вы уже разобрались, то необходимо прояснить и вопрос о параметрах контуров, которые могут наноситься при помощи такого устройства.

Такие контуры, внутренняя часть которых не заполняется даже в том случае, если исходный рисунок закрашен, должны передаваться на контроллер гравера файлами не в пиксельном (jpeg), а векторном формате.

Это значит, что изображение или надпись, наносимые на поверхность обрабатываемого изделия при помощи такого гравера, будут состоять не из пикселей, а из точек. Такие изображения и надписи можно как угодно масштабировать, ориентируясь на площадь поверхности, на которую они должны быть нанесены.

При помощи лазерного гравера на поверхность обрабатываемого изделия можно нанести практически любой рисунок и надпись, но для этого их компьютерные макеты необходимо перевести в векторный формат.

Выполнить такую процедуру несложно: для этого используются специальные программы Inkscape или Adobe Illustrator. Файл, уже переведенный в векторный формат, необходимо преобразовать еще раз, чтобы его смог корректно воспринимать контроллер гравировальной установки.

Для такого преобразования используется программа Inkscape Laserengraver.

Окончательная настройка и подготовка к работе

Окончательная настройка и подготовка к работе

Изготовив лазерный гравировальный станок своими руками и закачав в его управляющий компьютер необходимое программное обеспечение, не приступайте к работе сразу: оборудование нуждается в окончательной настройке и регулировке.

В чем заключается такая регулировка? Прежде всего необходимо убедиться, что максимальные перемещения лазерной головки станка по осям X и Y совпадают со значениями, полученными при преобразовании векторного файла.

Кроме того, в зависимости от толщины материала, из которого изготовлено обрабатываемое изделие, надо отрегулировать параметры тока, подаваемого на лазерную головку. Делать это нужно для того, чтобы не прожечь изделие, на поверхности которого требуется выполнить гравировку.

Очень важным и ответственным процессом является точная настройка (юстировка) лазерной головки. Юстировка нужна для того, чтобы отрегулировать мощность и разрешение луча, вырабатываемого лазерной головкой вашего гравера.

На дорогих серийных моделях лазерных гравировальных установок юстировка выполняется при помощи дополнительного маломощного лазера, установленного в основную рабочую головку.

Однако в самодельных граверах, как правило, используются недорогие лазерные головки, поэтому такой способ точной настройки луча для них не подходит.

Испытайте свой самодельный лазерный гравер сначала на простых рисунках

Достаточно качественная юстировка самодельного лазерного гравера может быть выполнена при помощи светодиода, извлеченного из лазерной указки. Провода светодиода подсоединяются к источнику питания с напряжением 3 В, а сам он фиксируется на рабочем конце штатного лазера.

Попеременно включая и регулируя положение лучей, исходящих от тестового светодиода и лазерной головки, добиваются их совмещения в одной точке.

Удобство использования светодиода от лазерной указки заключается в том, что юстировка с его помощью может выполняться без риска нанесения вреда как рукам, так и глазам оператора гравировальной установки.

ролик показывает процесс подключения гравера к компьютеру, настройку софта и подготовку станка к работе.

Лазерный резак/гравер своими руками — МозгоЧины

Лазерный гравер по металлу своими руками

Лазерный резак/гравер своими руками — МозгоЧины

Лазерный гравер по металлу своими руками

 
Доброго дня, мозгоинженеры! Сегодня поделюсь с вами руководством о том, как сделать лазерный резак мощностью 3Вт и рабочим столом 1.2х1.2 метра под управлением микроконтроллера Arduino.

Эта мозгоподелка родилась для создания журнального столика в стиле «пиксель-арт». Нужно было нарезать материал кубиками, но вручную это затруднительно, а через онлайн-сервис очень дорого.

Тогда и появился этот 3-х ватный резак/гравер для тонких материалов, уточню, что промышленные резаки имеют минимальную мощность около 400 ватт.

То есть легкие материалы, такие как пенополистирол, пробковые листы, пластик или картон, этот резак осиливает, а вот более толстые и плотные только гравирует.

Шаг 1: Материалы

Шаг 1: Материалы

• Arduino R3• Proto Board – плата с дисплеем• шаговые двигатели• 3-х ватный лазер• охлаждение для лазера• блок питания• регулятор DC-DC• транзистор MOSFET• платы управления двигателями• концевые выключатели• корпус (достаточно большой, чтобы вместить почти все детали списка)• зубчатые ремни• шарикоподшипники 10мм• шкивы для зубчатых ремней• шарикоподшипники• 2 доски 135х 10х2 см• 2 доски 125х10х2 см• 4 гладких стержня диаметром 1см• различные болты и гайки• винты 3.8см• смазка• стяжки-хомуты• компьютер• циркулярная Пила• отвертка• различные сверла• наждачная бумага

• тиски

Шаг 2: Электросхема

Шаг 2: Электросхема

Электроцепь лазерной самоделки информативно представлена на фото, есть лишь несколько уточнений.

Шаговые двигатели: думаю, вы заметили, что два двигателя запускаются от одной платы управления. Это нужно для того чтобы одна сторона ремня не отставала от другой, то есть два двигателя работают синхронно и сохраняют натяжения зубчатого ремня, нужное для качественной работы поделки.

Мощность лазера: при настройке регулятора DC-DC убедитесь, что на лазер подается постоянное напряжение, не превышающее технические характеристики лазера, иначе вы его просто сожжете. Мой лазер рассчитан на 5В и 2.4А, поэтому регулятор выставлен на 2А и напряжение немного ниже 5В.

Транзистор MOSFET: это важная деталь данной мозгоподелки, так как именно этот транзистор включает и выключает лазер, получая сигнал от Arduino.

Так как ток от микроконтроллера очень слабый, то только этот транзистор MOSFET может его воспринимать и запирать или отпирать контур питания лазера, другие транзисторы на такой слаботочный сигнал просто не реагируют.

MOSFET монтируется между лазером и «землей» от регулятора постоянного тока.

Охлаждение: при создании своего лазерного резака я столкнулся с проблемой охлаждения лазерного диода, для избежания его перегрева.

Проблема решилась установкой компьютерного вентилятора, с которым лазер отлично функционировал даже при работе 9 часов подряд, а простой радиатор не справлялся с задачей охлаждения.

Еще я установил кулеры рядом с платами управления двигателями, так как они тоже прилично греются, даже если резак не работает, а просто включен.

Шаг 3: Сборка

Шаг 3: Сборка

В приложенных файлах корпус находится 3D модель лазерного резака, показывающая размеры и принцип сборки рамки рабочего стола.

Челночная конструкция: она состоит одного челнока отвечающего за ось Y, и двух спаренных челнока отвечающих за ось X.

Ось Z не нужна, так как это не 3D принтер, но вместо нее лазер будет попеременно включаться и выключаться, то есть ось Z заменяется глубиной прожига.

Все размеры челночной конструкции я постарался отразить на фото, уточню лишь, что все установочные отверстия для стержней в бортах и челноках глубиной 1.2см.

Направляющие стержни: стержни стальные (хотя алюминиевые предпочтительней, но стальные проще достать), довольно большим диаметром в 1 см, но такая толщина стержня позволит избежать провисания.

Заводская смазка со стержней удалена, а сами стержни тщательно отшлифованы шлифмашинкой и наждачной бумагой до идеальной гладкости для хорошего скольжения.

А после шлифовки стержни обработаны смазкой с белым литием, которая предотвращает окисление и улучшает скольжение.

Ремни и шаговые двигатели: Для установки шаговых двигателей и зубчатых ремней я пользовался обычными инструментами и материалами, попавшимися под руку. Сначала монтируются двигатели и шарикоподшипники, а затем сами ремни. В качестве кронштейна для двигателей был использован лист металла примерно одинаковый по ширине и в два раза больше по длине, чем сам двигатель.

В этом листе просверлено 4 отверстия для крепления на двигатель и два для крепления к корпусу самоделки, лист согнут под углом 90 градусов и прикручен саморезами к корпусу. С противоположной стороны от места крепления двигателя аналогичным образом установлена подшипниковая система, состоящая из болта, двух шарикоподшипников, шайбы и металлического листа.

По центру этого листа сверлиться отверстие, с помощью которого он крепится к корпусу, далее лист загибается пополам и уже по центру обоих половинок сверлится отверстие для установки подшипниковой системы. На полученную таким образом пару двигатель-подшипник надевается зубчатый ремень, который крепится к деревянному основанию челнока обычным саморезом.

Более понятно этот процесс представлен на фото.

Шаг 4: Софт

Шаг 4: Софт

К счастью программное обеспечение для данной мозгоподелки бесплатно и с открытым исходным кодом. Все необходимое находится по нижеприведенным ссылкам:

Inkscape (для создания и преобразования контуров для прожига), с расширением для лазерного гравера.

UniversalGcodeSender-v1.0.7

Arduino IDE

With the GBRL Library
Все необходимое загружается на компьютер и сохраняется. Далее устанавливается Inkscape, и распаковывается архивlasergraver. Все что было в архиве копируется в папку Inkscape, чтобы было вот так C: Program Files (x86) Inkscape Share Extensions. На картинке показано что именно нужно копировать.

Далее по отдельности устанавливается Arduino IDE и GRBL библиотека, а потом просто распаковывается UniversalGcodeSender-v1.0.7.zip. Этот Universal G code является программой, которая посылает данные дизайна (контуров гравировки/резки) в Arduino. После распаковки этого архива, нужно найти и запустить файл start-windows.bat.

Настройка параметров Arduino: Первым делом загружается GRBL код в Arduino, для этого в Arduino IDE открывается вкладка Sketch/Import Library и выбирается пункт GRBL, затем из списка выбирается нужный код и загружается на Arduino.

Для дополнительной информации полезно перейти по ссылке With the GRBL Library. Когда код загружен, необходимо настроить параметры в соответствии со своим лазерным резаком и в этом поможет вот эта ссылка, где подробно описывается каждый параметр настройки.

А еще полезна эта ссылка, которая поможет рассчитать значения параметров для используемых материалов.

Шаг 5: Контуры для резки

Шаг 5: Контуры для резки

Важные моменты: необходимо понимать и помнить, что это мозгоподелка не заполняет контур, если рисунок закрашен. Более понятно это показано на рисунке.

И еще, файл дизайна примерфайлаконтура использует не пиксельный формат, как jpeg, а векторный.

То есть изображение состоит из точек, а не пикселей, и его можно как угодно масштабировать, то есть изменять размеры контура для резки.

Создание векторного рисунка: После определения того, что нужно вырезать/выгравировать, необходимо перенести это в векторный рисунок. Для этого подходят Inkscape или Adobe Illustrator, но не Photoshop или GIMP, так как последние не работают с векторной графикой.

Преобразование векторного рисунка: Векторный рисунок должен быть преобразован в формат понятный лазерному резаку и для этого подходит расширение Inkscape Laserengraver. Более подробно на видео.

Шаг 6: Настройка и резка

Сделай сам
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: